
On the Appropriateness of Negative Selection defined over Hamming
Shape-Space as a Network Intrusion Detection System

Thomas Stibor
Darmstadt University of

Technology
Hochschulstr. 10

64289 Darmstadt, Germany
stibor@sec.informatik.tu-

darmstadt.de

Jonathan Timmis
Departments of Electronics and

Computer Science
University of York, Heslington,

York
jt517@ohm.york.ac.uk

Claudia Eckert
Darmstadt University of

Technology
Hochschulstr. 10

64289 Darmstadt, Germany
eckert@sec.informatik.tu-

darmstadt.de

Abstract- Artificial immune systems have be-
come popular in recent years as a new approach
for intrusion detection systems. Indeed, the
(natural) immune system applies very effective
mechanisms to protect the body against foreign
intruders. We present empirical and theoretical
arguments, that the artificial immune system
negative selection principle, which is primarily
used for network intrusion detection systems,
has been copied to naively and is not appro-
priate and not applicable for network intrusion
detection systems.

1 Introduction

The immune system is a fascinating complex system
which interacts with different organs and other com-
plex systems e.g. the brain, to protect the body against
diseases and infections. To accomplish this task, many
different dynamic and adapting techniques — e.g. pat-
tern classification, detection of new unseen intruders,
memory for a second fast immune respond — are per-
formed [1]. In recent years, immune system mech-
anisms have been abstracted by computer scientists
for solving computational and information processing
problems and a new field termed artificial immune sys-
tem has arisen. In this paper, we theoretically investi-
gate the applicability and appropriateness of the arti-
ficial immune system negative selection principle as an
intrusion detection system. Previous investigations [2]
based on simulations revealed that this approach is in-
applicable for intrusion detection. Our investigations
confirm and support these results. To present our ar-
guments, the work is organized as follows : In section 2,
anomaly and ruled based misuse models are described
and examples are provided. In section 3, the immune
system is briefly described, with focus on the negative
selection principle. In section 4, the negative selec-
tion algorithm and the r-chunk matching rule are de-
scribed. Additionally, the “known negative selection”
problems [3] are highlighted and problems with non-
detectable elements (termed holes) are illustrated. In
section 5, formulas to calculate the number of genera-
ble r-chunk detectors and the number of holes are pre-
sented. These formulas are then empirically verified.

Additionally, the complexity of the most known algo-
rithms to generate r-contiguous and r-chunk detectors
are presented. In section 6, the shown arguments, for-
mulas and problems of the negative selection principle
are discussed with regard to a network intrusion detec-
tion system.

2 Intrusion Detection Systems

Intrusion detection systems (short IDSs) [4, 5] are soft-
ware and hardware systems that automate the pro-
cess of monitoring the events occurring in a computer
system or network and analyze them for signs of in-
trusions. Heady et al. [6] defined an intrusion as
“any set of actions that attempt to compromise the
integrity, confidentially and availability of information
resources”. Intrusions are caused by attackers access-
ing the system, authorized users of the systems who
attempt to gain additional privileges for which they
are not authorized and computer worms and viruses
which carry malicious code. IDSs are based on the be-
lief that an intruder’s behavior will be noticeably dif-
ferent from that of a legitimate user and that many
unauthorized actions are detectable. Typically, IDSs
employ anomaly and ruled based misuse models in or-
der to detect intrusions and are differenced in host-
based and network-based systems. Host-based systems
employ the host operating system’s audit trails as the
main source of input to detect intrusive activity, while
network-based IDSs build their detection mechanism
on monitored network traffic. One of the most pop-
ular network-based IDS is the open source program
Snort [7]. Snort is a rule-based network IDS which
contains a database, where known malicious patterns
(termed signatures) are stored. Each network packet,
which is monitored by Snort, is disassembled in several
distinct packet components and compared to the sig-
natures in the database. When a signature matched
with a packet component, an event is triggered and
appropriate actions can be executed. The following ex-
amples show different Snort rules, to detect a DDoS1

communication, a worm and a buffer overflow attack.

1Distributed Denial of Service



Example 1 alert icmp

$EXTERNAL_NET any -> $HOME_NET any

(msg:"DDOS Stacheldraht client spoofworks";

icmp_id:1000; itype:0; content:"spoofworks";

classtype:attempted-dos; sid:227; rev:6;)

Example 2 alert udp $EXTERNAL_NET any ->

$HOME_NET 1434 (msg:"MS-SQL Worm propagation

attempt"; content:

"|81 F1 03 01 04 9B 81 F1 01|";

classtype:misc-attack; sid:2003; rev:8;)

Example 3 alert tcp $EXTERNAL_NET any ->

$HOME_NET 143

(msg:"IMAP partial body buffer overflow

attempt";content:"PARTIAL"; nocase;

content:"BODY["; distance:0; nocase;

pcre:"/\sPARTIAL.*BODY\[[^\]]{1024}/smi";

classtype:misc-attack; sid:1755; rev:14;)

In example 1, a snort signature is shown, which indicat-
ing the presence of a variant of the Stacheldraht DDoS
tool [8]. Stacheldraht is a distributed denial of ser-
vice tool, uses a tiered structure of compromised hosts
to coordinate and participate in a denial of service at-
tack. There are “handler” hosts that are used to co-
ordinate the attacks and “agent” hosts that launch the
attack. Communication between the handler and the
agent is conducted using icmp echoreply. The commu-
nication information is located inside an ICMP packet
and consists of the ASCII string “spoofworks”. Exam-
ple 2 shows the snort signature in hexadecimal rep-
resentation of the “well known” SQL worm, which in-
fected million of computers, where an un-patched Mi-
crosoft SQL database was running. Example 3 shows
the snort signature of a buffer overflow exploit to an
IMAP Server. This event is generated when a remote
authenticated user sends a malformed request for par-
tial mailbox attributes to an IMAP server. Examples
1,2,3 emphasize, the fact that it is necessary to inspect
the network packet payload, to recognize and deter-
mine the type of the intrusion.
In contrast, IDSs which employ anomaly models, estab-
lish profiles of normal activities of the operating system
or the network traffic and detect intrusions by identi-
fying significant deviations from the observed profiles.
Network-based IDSs establish profiles based on con-
nection vectors. A connection vector consists of dif-
ferent fields which characterize a network packet and
the established connection such as source, destination,
length of the message, time it was sent, the frequency
of the communication, etc. In [5] a connection vector
is shown and detailed described, which encompasses
15 fields with characteristics about the network packet
and the connection, but without payload information.
Ideally a combination of anomaly and ruled based mis-
use model is applied, because both models have draw-
backs. A ruled based misuse model cannot detect at-

tacks for which it has no signatures — they do not react
well to the unknown. Anomaly based models have the
weakness of high false alarm rates, i.e. “normal” is rec-
ognized as an intrusion.

3 Immune System

The immune system [9] is responsible to protect
the body against disease and infections caused by
pathogens. Pathogens are foreign substances like bac-
teria, fungi, parasites and viruses, which continuously
attack the body and can lead to death in the worst case.
To recognize and destroy these substances, the immune
system maintains different types of cells, which coop-
erate in a recognition and destruction process. One
type of these cells are lymphocytes, which belong to the
class of white blood cells. Lymphocytes carry antibod-
ies on their surface, which are comparable to detectors
and are able to recognize pathogenic patterns (termed
antigens). Lymphocytes are differentiated in two dif-
ferent classes. B-Lymphocytes which mature in the
bone marrow and T-Lymphocytes which mature in the
thymus. Both lymphocyte types are able to recognize
a wide spectrum on antigens, this includes also cells
which belongs to the body (termed self). To avoid this
kind of self-recognition, the negative selection process
eliminates self-reactive lymphocytes by a controlled cell
death (apoptosis). The lymphocytes which survive this
process are self-tolerant and recognize antigens which
not belongs to the body (termed non-self).

3.1 Artificial Immune System

An artificial immune system (AIS) is a paradigm in-
spired by the immune system and is used for solving
computational and information processing problems.
AISs exploit principles and methods developed by (the-
oretical) immunologist and implement these in compu-
tational systems [1]. An AIS can be described and de-
veloped using a framework (see Fig. 1) which contains
the following basic elements:

• A representation for the artificial immune ele-
ments;

• A set of functions, which quantifies the interac-
tions of the artificial immune elements;

• A set of algorithms which based on observed im-
mune principles and methods.

In the last 10 years many AIS algorithms and appli-
cations based on the immune system metaphors have
been proposed. One such AIS algorithm is negative
selection, which is mainly used for anomaly detec-
tion [10, 11] and intrusion detection systems [12, 13].

4 Negative Selection Principle

The negative selection principle is a mechanism of
the immune system to protect the body against self



Representation

Affinity Measures

Immune Algorithms

AIS

Solution

Application Domain

r−contiguous

Real−Valued
Hamming, Integer

negative selection
positive selection
clonal selection

r−chunk
Euclidean distance

Figure 1: The AIS framework proposed by de Castro
and Timmis

Generate Random
Strings R

Match Detector Set D

Self Strings S

Reject

yes

no

(a) Generation of detector set

Match

yes

Detector Set D

Protected
Strings S

NonSelf
Detected

no

(b) Monitor protected strings for ma-
nipulation

Figure 2: Negative selection algorithm proposed by
Forrest et al.

reactive lymphocytes. This principle inspired Forrest
et al. [11] to propose a negative selection algorithm to
detect data manipulation caused by computer viruses.
The basic idea is to generate a number of detectors
in the complementary space and then to apply these
detectors to classify new (unseen) data as self (no data
manipulation) or non-self (data manipulation). The
negative selection algorithm proposed by Forrest et
al. is illustrated in figure 2 and summarized in the
following steps.

Algorithm 1
Given a shape-space U , self set S and non-self set N ,
where

U = S ∪ N and S ∩ N = ∅.

1. Define self as a set S of elements of length l in
shape-space U .

2. Generate a set D of detectors, such that each fails
to match any element in S.

3. Monitor S for changes by continually matching
the detectors in D against S.

This original algorithm has some drawbacks. First, the
algorithm is inefficient, since a vast number of randomly

generated detectors need to be discarded, before the
required number of suitable once are obtained — this
is a simple random search. And second, the algorithm
is defined over a shape-space which induces additional
problems, discussed in the following section.

4.1 Shape-Space and Affinity

The notion of shape-space was introduced by Perelson
and Oster [14] and allows a quantitative affinity de-
scription between antibodies and antigens. More pre-
cisely, a shape-space is a metric space with an associ-
ated distance (affinity) function. A detailed overview
of other shape-shapes and affinity functions used in ar-
tificial immune systems is provided in [1].

4.2 Hamming Shape-Space and R-chunk Match-
ing

The Hamming shape-space UΣ
l is built out of all

elements of length l over an finite alphabet Σ. In
the original negative selection algorithm proposed
by Forrest et al. [11] it is defined over the binary
alphabet Σ = {0, 1}. The r-contiguous [15] matching
rule was applied to determine the affinity between a
detector and an element. Informally, two elements,
with the same length, match if at least r contiguous
characters are identical. In succeeding works [16, 17]
the performance of different matching rules over the
binary alphabet are compared and the r-chunk [17]
matching rule achieved the highest matching perfor-
mance compared to the other matching rules over the
binary alphabet. The r-chunk matching rule is an
improved variant of the r-contiguous matching rule
and is defined as follows :

Given a shape-space UΣ
l , which contains all elements

of length l over an alphabet Σ and a shape-space DΣ
r .

Definition 1 An element e ∈ UΣ
l with e = e1e2 . . . el

and detector d ∈ N × DΣ
r with d = (p, d1d2 . . . dr), for

r ≤ l, p ≤ l − r + 1 match with r-chunk rule if ei =
di for i = p, . . . , p + r − 1.
Informally, element e and detector d match if a position
p exists, where all characters of e and d are identical
over a sequence length r.
The Hamming shape-space and the affinity functions
r-contiguous and r-chunk seem very appealing at first
sight, because it allows a straightforward mathemat-
ical analysis [18] and properly abstracts the binding
between antibody and antigen [15].

4.3 Generalization by Undetectable Elements

All matching rules, including the r-chunk rule inves-
tigated in [17], cause undetectable elements (termed
holes). Holes are elements of N or self elements not
seen during the training phase. For these elements no
detectors can be generated and therefore, they cannot
be recognized and classified as non-self elements. The



unseenseen

detectors
Covered by

S S

S = S       + Sseen unseen

N

Generalization
(Holes)

(a) The detector set generalizes well, as all
unseen self elements Sunseen (holes) are clas-
sified as self and the rest as non-self .

S S

Covered by detectors

S = S        + Sseen unseen

unseenseen N

(b) The detector set overfits, because no
holes exist and therefore unseen self elements
Sunseen are classified as non-self e elements.

seenS

detectors
Covered by

unseenS holesN N

(Holes)
Generalization

(c) The detector set underfits, because a larger
number of non-self elements Nholes are not rec-
ognized by the detectors and therefore are clas-
sified as self.

Figure 3: Holes are necessary to generalize beyond the
training set. Too many holes results in an underfitting,
whereas, no holes results in an overfitting.

term holes is an improper expression, because holes
are necessary, to generalize beyond the training set. A
detector set which generalizes well, ensures that seen
and unseen self elements are not recognized by any
detector, whereas all other elements are recognized
by detectors and classified as non-self (see Fig. 3(a)).
A detector set which covers all non-self elements and
all unseen self elements overfits, because no holes (no
generalization) exists (see Fig. 3(b)). In contrast, a
large number of holes implies, that a large number
of unseen self elements and non-self elements as well,
are not covered by the detector set and therefore the
detector set underfits (see Fig. 3(c)). Balthrop et
al. [16] proposed a method (termed crossover-closure)
to find holes for the r-chunk matching rule by given
parameters l, r and S. We have summarized Balthrop’s
method algorithmically (see algorithm 2) and show
(see Fig. 4) an illustrative example of the construction

010

011

100

101

111

111

101

110

011

100

110

010

100

001

010

 = { S1, H1 }

S1:={01011}

S2:={01100}

S3:={01110}

S4:={10010}

S5:={10100}

S6:={11100}

H1:={10011}

H2:={01010}

H3:={11110}

 = { S2, , S S

S

5 6

6

 }

 = { S3, H3 }

 = { S4, H2 }

 = { S2, , S5 }

r−1

r−1

Figure 4: Construction to find holes for r = 3
and l = 5 for the r-chunk matching rule for
S = {01011, 01100, 01110, 10010, 10100, 11100}. For
elements H1 = {10011}, H2 = {01010}, H3 = {11110}
it is not possible to generate a detector which recognize
H1, H2, H3. All possible generable detectors are D =
{{1|000}, {1|001}, {1|110}, {2|000}, {2|011}, {2|100}
, {3|000}, {3|001}, {3|101}, {3|111}}

for a given set S and l = 5, r = 3.

Algorithm 2
Given a set S = {S1, S2, . . . , Sn} of self strings,
element length l and matching length r :

1. Cut Si in l − r + 1 substrings Si,j := Si[j, . . . , r−
1 + j]
for j = 1, . . . , l − r + 1 , i = 1, . . . , n.

2. Connect substring Si,j to Sk,j+1 with a direct
edge, if the last r − 1 characters of Si,j and the
first r − 1 characters of Sk,j+1 are identical, for
i = 1, . . . , n, k = 1, . . . , n and j = 1, . . . , n − 1.

3. Traverse and shuffle coincident substrings
Si,1, . . . , Si,l−r+1 for i = 1, . . . , n to obtain the
set S of self strings and the set H of undetectable
elements2.

Algorithm 2 shows, that holes arise in commonly occur-
ring distinct self strings. In the next section, we show
formulas to calculate the number of generable detectors
and the number of holes under the assumption that S

is randomly drawn from UΣ
l .

5 Number of Generable Detectors and

Resulting Holes

The number of generable r-chunk detectors were inves-
tigated in [19, 20]. In these works, formulas are pro-
vided to calculate the number of generable detectors
by given the parameter |S|, l, r. Esponda et al. [19] es-
timated the total number of all generable detectors by

2To obtain set H, perform the set difference (H ∪ S)\S



given |S|, l, r as follows :

|D|=(l−r+1)(2r−E(r,|S|))=(1− 1
2r )

|S|
·(l−r+1)·2r (1)

The term E(r, |S|) ≈ 2r − 2r(1− 2−r)|S| approximates
the expected number of distinct patterns by given the
r-chunk length r and the cardinality S.

Stibor et al. [20] have shown and proved a more gen-
eral formula to calculate the numbers of all generable
detectors :

|D|=(1− 1
(l−r+1)·|Σ|r )|S|·(l−r+1)

·(l−r+1)·|Σ|r (2)

The terms (1) and (2) only distinguish in the expression
(l−r+1) and the generalization of the alphabet size Σ.
A simple calculation shows that the difference between
term (1) and (2) is negligible.

In the work [19], Esponda et al. additionally pro-
vided formulas to calculate the number of holes for the
binary alphabet Σ = {0, 1}. In order to produce these
formulas, they employed the crossover closure CC con-
struction (see Fig. 4 and algorithm 2) and approximates
the number of outgoing edges, which results in the num-
bers of holes and self strings. Summarizing Esponda et
al. [19] derivation, the number of holes |H | can be cal-
culated as follows :

|H|=CC(l,r)−|S| (3)

where

CC(l,r)=E(r,|S|)·(1+P (r,|S|))(l−r) (4)

The subterm (4) yields the number of all strings, which
can be constructed by the crossover closure. The
crossover closure also constructs self strings S (see
Fig. 4) and therefore, this proportion must be sub-
tracted (see Eq. (3)). The subterm P (r, |S|) results
from the likelihood of a substring si having outgoing
edges.

P (r,|S|)=1− 1
2 (P0+P1)

where

P0 = (1− 1

2r+1 )
4|S|

P1 = 4(1− 1

2r+1 )2|S|
−4(1− 1

2r+1 )3|S|

Where P0 is the probability of a substring to have no
outgoing edges and P1 to have one outgoing edge (see
[19] for more details). Using the subterm P (r, |S|) and
simplifying term (4) one obtains

H(|S|,l,r)=T1·T2−|S| (5)

where

T1 = 2r−2r(1− 1
2r )

|S|

T2 =
[

2− 1
2 (1−

1

2r+1 )
4|S|

−2
(

(1− 1

2r+1 )
2|S|

−(1− 1

2r+1 )
3|S|

)](l−r)

 0

 5000

 10000

 15000

 20000

 25000

 0  5000  10000  15000  20000  25000  30000

Number of self elements |S|

N
um

be
r 

of
 d

et
ec

to
rs

 |D
| &

 N
um

be
r 

of
 h

ol
es

 |H
|

# holes empirical

# holes theoretical

# detectors theoretical

# detectors empirical

hole peak

Figure 5: Numbers of detectors and numbers of holes,
for l = 15, r = 11, |Σ| = 2 and |S| = {0, . . . , 215},
calculated with Eqs. (2) and (5) and empirically by
the algorithm output

5.1 Empirical Formula Verifications

We have implemented the algorithm proposed by Sti-
bor et al. [20], which generates all possible r-chunks
detectors given the alphabet size Σ, string length l and
r-chunk length r. With simple modifications — count
the number of non-self strings not detected by any de-
tector, the algorithm also outputs the number of holes.
Since the algorithm first initializes a hashtable of size
|Σ|r · (l− r +1), we perform our simulations on a small
value of l. The values l = 15, r = 11 and |Σ| = 2
were used. For each |S| = {0, . . . , 215} (randomly de-
termined) a detector generation (algorithm) run was
performed and the resulting number of detectors and
holes were depicted in a graph (see Fig. 5). To verify
the accuracy of Eq. (2) which calculates the number
of detectors and Eq. (5) which calculates the number
of holes, these results were also depicted in the graph
(see Fig. 5). One can see, that the theoretical derived
formulas, approximate well the empirical results. More
interesting is the fact that for l = 15, r = 11, the num-
ber of generable detectors exponentially decrease to the
number of self elements, whereas the number of holes
exponentially increase. Reaching a certain proportion
of self elements, no detectors can be generated and all
non-self elements and unseen self elements are holes. In
figure (5) this is termed hole peak. After the hole peak
is passed, the holes decrease nearly linear to 0, because
the number of self elements increase and the relation
U = S ∪ N must hold.

5.2 Control Number of Detectors and Holes
with r-chunk length r

Investigating equations (2) and (5), one can see, that
the exponential curves behavior can be controlled by
the parameters |S|, l, r. Usually, the length l is an a-
priori defined value, which is determined by the pay-
load length or by the length of the connection vector.



 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  5000  10000  15000  20000  25000  30000

Number of self elements |S|

N
um

be
r 

of
 h

ol
es

 |H
|

r = 9

r = 10

r = 11

r = 12

Figure 6: Number of holes for r-chunks length r =
{9, 10, 11, 12}, l = 15, |Σ| = 2 and |S| = {0, . . . , 215}

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  5000  10000  15000  20000  25000  30000

Number of self elements |S|

N
um

be
r 

of
 d

et
ec

to
rs

 |D
|

r = 9

r = 11

r = 12

r = 10

Figure 7: Number of generable detectors for r-chunks
length r = {9, 10, 11, 12}, l = 15, |Σ| = 2 and |S| =
{0, . . . , 215}

The number of self elements |S| depends on the ele-
ment length l and is not adaptable, when the length
l is a-priori defined. Therefore, the parameter r can
be used, to control the number of generable detectors
and the number of holes. In figures (6) and (7) the ef-
fects for different r-chunks lengths are depicted. One
can see, that increasing r closer to l, the number of
holes decrease and the number of generable detectors
increase. Furthermore, the hole peak moves toward a
larger amount of self elements. This is an important
property, since not all self elements are seen during the
training phase. When r is not close to l, the num-
ber of holes (the generalization) increase exponentially
with the number of self elements until the hole peak
is reached. This means that the detector set exponen-
tially underfits.

The number of holes can also be controlled (re-
duced) with permutation masks [21, 19]. A permuta-
tion mask is a bijective mapping π that specifies a re-
ordering for all strings u ∈ UΣ

l , i.e. u1 → π(u1), u2 →

π(u2), . . . , u|Σ|l → π(u|Σ|l). Permutation maps can re-
duce the number of holes, when π is appropriate cho-
sen and a certain number of detectors are generable.
In our consideration the self elements are randomly de-
termined. Let l = 49, r = 12, |Σ| = 2 and |S| = 216.
Using formula 2, one obtains |D| = 0.0175 generable
detectors. A randomly chosen permutation mask π is
comparable to choosing randomly |S| = 216 new self
elements. Applying formula 2, one obtains likewise
|D| = 0.0175 generable detectors. Applying permu-
tation masks is only useful, when a certain number of
detectors are generable. Figure 7 illustrates this fact.
For l = 15, |S| = 1000 it is not possible to generate any
detector for 1 ≤ r ≤ 10 and therefore the permutation
masks providing no benefits.

5.3 Detector Generating Algorithm with Expo-
nential Complexity

The first version of the negative selection algorithm (see
algorithm 1) [11] mirrored most closely the generation
of T-Cells in the immune system. Candidate detectors
were drawn at random from U and checked against
all elements in S. This process of random generation
and checking was repeated until the required number
of detectors was generated. This random search for de-
tectors has a constant space complexity in |S|, but an
exponential runtime complexity in |S| and is therefore
not applicable. In a succeeding work, D’haeseleer et.
al [22] proposed two detector generating algorithms for
the r-contiguous matching rule with an improved run-
time complexity. The linear time detector generating
algorithm has a linear runtime complexity in |S| and
|D|, but still requires time and space exponential in r :

Time : O ((l − r) · |S|) + O ((l − r) · 2r) + O (l · |D|)

Space : O
(

(l − r)2 · 2r
)

The second algorithm termed greedy detector generat-
ing algorithm has a similar complexity :

Time : O ((l − r) · |D| · 2r)

Space : O
(

(l − r)2 · 2r
)

Another algorithm termed binary template for r-
contiguous matching rule was proposed by Wierz-
choń [23]. It has also an exponential complexity in
r :

Time : O ((l − r) · 2r · |D|) + O (2r · |S|)

Space : O ((l − r) · 2r) + O (|D|)

For the r-chunk matching rule, Stibor et. al [20] pro-
posed an algorithm, which is used in this work, with
complexity :

Time : O ((l − r) · |Σ|r) + O (|S| · (l − r)) + O (|Σ|r)

Space : O ((l − r) · |Σ|r)

All four algorithms have a runtime and a space com-
plexity, which is exponential in r and are only appli-
cable for small values of r. Using for example a value



r = 64 and an alphabet size |Σ| = 2, the space and time
complexity is infeasible high. This complexity problem
makes it inapplicable for network intrusion detection
application.

6 AIS and Intrusion Detection Systems

In many works the appealing connections between
the immune system and the IDSs are stressed — an
overview is provided in [13]. Intuitively, it seems ob-
vious to abstract immune system principles and con-
ceptualize algorithms for intrusion detection tasks. Es-
pecially, the capability of the immune system for dy-
namically adapting to previously unseen disease, is an
attractive property for developing intrusion detection
systems, which behave in a similar manner.
We showed in section 2, how the IDS Snort recog-
nizes attackers and worms by means of pattern match-
ing. Usually, the IDS signatures have a length of 10
bytes or more. The signature which matches for ex-
ample the IMAP buffer overflow, has a string length
of 39 bytes. Intrusion detection systems which employ
anomaly models, require connection vectors of a deter-
mined length which characterize the network packets
and connections. Assuming each field in the connec-
tion vector requires 2 bytes to store the data3, then the
connection vector described in [5], requires 30 bytes.
Using the analysis in section 5, which shows the coher-
ence between the number of generable detectors and
the number of resulting holes. It is shown, that r must
be close to l to generate a certain number of detectors
and to control the number of holes (under/overfitting
behavior). A large number of holes implies a low detec-
tion rate, i.e. attacks are not recognized by the detec-
tors. On the other hand, a limited number of holes re-
sults in a high false alarm rate, i.e. unseen normal data
is recognized by the detectors and classified as an at-
tack. Furthermore, the complexity of the most known
algorithms to generate detectors is presented and the
high runtime and space complexity is stressed.
Combining these arguments, it is clear, that the so far
proposed AIS intrusion detection approach based, on
the negative selection principle4 is not appropriate and
not applicable for these kind of network intrusion detec-
tion models. Using a connection vector, which consist
of 240 bits or signatures which consist of 80 bits, it is
not possible to generate in polynomial time a certain
number of detectors and to obtain a linear control on
the number of holes.

7 Conclusion

This work investigated the appropriateness of the nega-
tive selection principle as a network intrusion detection

3which is very optimistic estimation, because many fields are
contiguous values and require at least 4 bytes

4defined over the Hamming shape-space associated with the
r-chunk and r-contiguous matching rule

technique. With mathematical arguments and empiri-
cal verifications it is shown, that the negative selection
algorithm defined over the Hamming shape-space is not
an appropriate method for a network-based IDS. The
Hamming shape-shape and the matching rules induce
non-detectable elements (termed holes) which are nec-
essary to generalize beyond the training set. However,
the number of holes increase exponentially when the
r-chunk length r is not close to the element length l

and therefore an exponential number of elements can-
not be detected by the generated detectors. To gen-
erate a certain number of detectors and to obtain a
non-exponential number of holes, r must lie near l.
However, this results in an exponential space and time
complexity and makes the negative selection algorithm
inapplicable. Moreover, existing network intrusion de-
tection models5 were briefly presented. It was shown,
that the negative selection principle defined over the
Hamming shape-space is not an appropriate technique
for both network intrusion detection models.

References

[1] de Castro, L.N., Timmis, J.: Artificial Immune
Systems: A New Computational Intelligence Ap-
proach. Springer-Verlag (2002)

[2] Kim, J. and Bentley, P. J.: Evaluating nega-
tive selection in an artificial immune system for
network intrusion detection. In: Proceedings of
the Genetic and Evolutionary Computation Con-
ference, GECCO-2001, San Francisco, California,
USA, Morgan Kaufmann (2001) 1330–1337

[3] Freitas, A., Timmis, J.: Revisiting the Founda-
tions of Artificial Immune Systems: A Problem
Oriented Perspective. In Timmis, J., Bentley, P.,
Hart, E., eds.: Proceedings of the 2nd Interna-
tional Conference on Artificial Immune Systems
(ICARIS). Volume 2787 of Lecture Notes in Com-
puter Science., Springer (2003) 229–241

[4] Bace, R., Mell, P.: Intrusion Detec-
tion Systems. National Institute of Stan-
dards and Technology (NIST). (2001)
http://csrc.nist.gov/publications/nistpubs/800-
31/sp800-31.pdf.

[5] Mukherjee, B., Heberlein, L.T., Levitt, K.N.: In-
trusion detection system. IEEE Network (1994)

[6] Heady, R., Luger, G., Maccabe, A., Servilla, M.:
The architecture of a network level intrusion sys-
tem. Technical report, Computer Science Depart-
ment, University of New Mexico (1990)

[7] Koziol, J.: Intrusion Detection with Snort. Sams
(2003)

5anomaly and ruled based misuse



[8] Dittrich, D.: The stacheldraht dis-
tributed denial of service attack tool (1999)
http://staff.washington.edu/dittrich.

[9] Janeway, C.A., Travers, P., Walport, M., Shlom-
chik, M.: Immunologie. Spektrum Akademischer
Verlag (2002)

[10] Dasgupta, D., Forrest, S.: Novelty detection in
time series data using ideas from immunology. In:
Proceedings of the 5th International Conference on
Intelligent Systems, IEEE Computer Society Press
(1996)

[11] Forrest, S., Perelson, A.S., Allen, L., Cherukuri,
R.: Self-nonself discrimination in a computer. In:
Proceedings of the 1994 IEEE Symposium on Re-
search in Security and Privacy, IEEE Computer
Society Press (1994)

[12] Hofmeyr, S.A., Forrest, S., D’haeseleer, P.: An im-
munological approach to distributed network in-
trusion detection. In: First International Work-
shop on the Recent Advances in Intrusion Detec-
tion. (1998)

[13] Aickelin, U., Greensmith, J., Twycross, J.: Im-
mune system approaches to intrusion detection –
a review. In Giuseppe Nicosia, Vincenzo Cutello,
P.J.B., ed.: Proceedings of the 3nd Interna-
tional Conference on Artificial Immune Systems
(ICARIS). Volume 3239 of Lecture Notes in Com-
puter Science., Springer-Verlag (2004) 316–329

[14] Perelson, A.S., Oster, G.: Theoretical studies of
clonal selection: minimal antibody repertoire size
and reliability of self-nonself discrimination. In: J.
Theor. Biol. Volume 81. (1979) 645–670

[15] Percus, J.K., Percus, O.E., Perelson, A.S.: Pre-
dicting the size of the t-cell receptor and antibody
combining region from consideration of efficient
self-nonself discrimination. Proceedings of Na-
tional Academy of Sciences USA 90 (1993) 1691–
1695

[16] Balthrop, J., Esponda, F., Forrest, S., Glickman,
M.: Coverage and generalization in an artificial
immune system. In: GECCO 2002: Proceedings of
the Genetic and Evolutionary Computation Con-
ference, New York, Morgan Kaufmann Publishers
(2002) 3–10

[17] González, F., Dasgupta, D., Gomez, G.: The
effect of binary matching rules in negative selec-
tion. In: Genetic and Evolutionary Computation
– GECCO-2003. Volume 2723 of Lecture Notes
in Computer Science., Chicago, Springer-Verlag
(2003) 195–206

[18] D’haeseleer, P.: An immunological approach to
change detection: Theoretical results. In: Proc.

9th IEEE Computer Security Foundations Work-
shop. (1996) 18–26

[19] Esponda, F., Forrest, S., Helman, P.: A for-
mal framework for positive and negative detection
schemes. IEEE Transactions on Systems, Man and
Cybernetics Part B: Cybernetics 34 (2004) 357–
373

[20] Stibor, T., Bayarou, K.M., Eckert, C.: An inves-
tigation of R-chunk detector generation on higher
alphabets. In: Genetic and Evolutionary Com-
putation – GECCO-2004, Part I. Volume 3102 of
Lecture Notes in Computer Science., Seattle, WA,
USA, Springer-Verlag (2004) 299–307

[21] Hofmeyr, S.A., Forrest, S.: Architecture for an
artificial immune system. Evolutionary Computa-
tion 8 (2000) 443–473

[22] D’haeseleer, P., Forrest, S., Helman, H.: An im-
munological approach to change detection: algo-
rithms, analysis, and implications. In: Proceed-
ings of the 1996 IEEE Symposium on Research
in Security and Privacy, IEEE Computer Society,
IEEE Computer Society Press (1996) 110–119

[23] Wierzchoń, S.: Generating optimal repertoire of
antibody strings in an artificial immune system.
In: Intelligent Information Systems, Springer Ver-
lag (2000) 119–133


