
A Comparative Study of Real-Valued Negative

Selection to Statistical Anomaly Detection

Techniques

Thomas Stibor1 and Jonathan Timmis2 and Claudia Eckert1

1 Department of Computer Science
Darmstadt University of Technology

{stibor,eckert}@sec.informatik.tu-darmstadt.de
2 Departments of Electronics and Computer Science

University of York, Heslington, York
jt517@ohm.york.ac.uk

Abstract. The (randomized) real-valued negative selection algorithm is
an anomaly detection approach, inspired by the negative selection im-
mune system principle. The algorithm was proposed to overcome scaling
problems inherent in the hamming shape-space negative selection algo-
rithm. In this paper, we investigate termination behavior of the real-
valued negative selection algorithm with variable-sized detectors on an
artificial data set. We then undertake an analysis and comparison of the
classification performance on the high-dimensional KDD data set of the
real-valued negative selection, a real-valued positive selection and sta-
tistical anomaly detection techniques. Results reveal that in terms of
detection rate, real-valued negative selection with variable-sized detec-
tors is not competitive to statistical anomaly detection techniques on the
KDD data set. In addition, we suggest that the termination guarantee
of the real-valued negative selection with variable-sized detectors is very
sensitive to several parameters.

1 Introduction

The field of Artificial Immune Systems (AIS) has seen the development of many
algorithms. One of the major algorithms developed within AIS is the negative
selection algorithm, first proposed by Forrest et al. [1] and then subsequently
developed over the years [2,3,4,5]. This paper investigates the real-valued nega-
tive selection algorithm with variable-sized detectors [6] and its applicability to
network intrusion traffic. The negative selection algorithm is oft cited for its po-
tential use in intrusion detection problems due to its ability to generate a set of
detectors from a single class of data (usually the normal network traffic), that is
capable of identifying possible intrusions. However, there remains little work in
the literature regarding the application of the negative selection algorithm with
variable-sized detectors to network intrusion detection. This paper undertakes
a comparative study between the negative selection with variable-sized detec-
tors, another simple AIS algorithm, positive selection, and two well established

statistical techniques. Our investigations reveal, that whilst appealing, negative
selection with variable-sized detectors does not appear to perform as well as
the more established techniques. The paper is organized as follows: Section 2
provides a simple overview of anomaly detection. Then, the immune negative
selection principle and basic negative selection algorithm are briefly explained
in section 3. Section 3.1 provides a review of the real-valued negative selection
algorithm with variable-sized detectors. This is followed by a simple real-valued
positive selection algorithm in section 3.2. Through the use of an artificial data
set, in section 4 we explore the termination behavior of the real-valued negative
selection algorithm. For comparative purposes, two novelty detection techniques
are described in section 5. This is then followed by an analysis of the classi-
fication performance of the negative selection and is compared to the positive
selection and to statistical novelty detection techniques in section 6.

2 Anomaly Detection

Anomaly detection, also referred to as novelty detection [7], outlier detection [7]
or one-class learning [8,9], is a classification technique, which is used for classify-
ing data where typically only a single class of data is available, or a second class
of data is under-represented e.g. machine fault detection or medical diagnosis.
In a probabilistic sense, novelty detection is equivalent to deciding whether an
unknown test sample is produced by the underlying probability distribution that
corresponds to the training set of normal examples. Such approaches are based on
the assumption that anomalous data are not generated by the source of normal

data. More formally, the task is to find a functional mapping f : R
N → {C0, C1},

using training data samples generated i.i.d.3 according to an unknown probabil-
ity distribution P (x, y)

(x1, y1), . . . , (xn, yn) ∈ R
N × Y, Y = {C0, C1}

such that f will correctly classify unseen examples (x, y). In the worst case, the
training set contains only normal samples (x, y ∈ C0) and the challenge is to
detect abnormal samples (x, y ∈ C1) with the function f which was trained4

with only normal samples.

3 Negative Selection Principle

The negative selection principle is a process that takes place in the thymus gland,
which helps to filter self reactive lymphocytes away from entering the lymphatic
system. This principle inspired Forrest et al. [1] to propose a negative selection
algorithm to detect data manipulation caused by computer viruses. The basic
idea was to generate a number of detectors in the complementary space and then

3 independently drawn and identically distributed
4 the parameters are determined, based on the seen training samples

to apply these detectors to classify new (unseen) data as self (no data manipula-
tion) or non-self (data manipulation). The negative selection algorithm proposed
by Forrest et al. is summarized in the following steps.

Given a shape-space U , self set S and non-self set N , where

U = S ∪N and S ∩N = ∅.

1. Define self as a set S of elements of length l in shape-space U .
2. Generate a set D of detectors, such that each fails to match any element in

S.
3. Monitor S for changes by continually matching the detectors in D against

S.

3.1 Real-Valued Negative Selection

The idea to generate detectors in the complementary space for continuous data,
was proposed informally by Ebner et al. [10] and formally by Gonzalez et al. [4,5].
The real-valued negative selection algorithm, operates on a unitary hypercube
[0, 1]n. A detector d = (cd, rns) has a center c ∈ [0, 1]n and a non-self recognition
radius rns ∈ R. Furthermore, every self element s = (cs, rs) has a center and a self
radius rs. The self-radius was introduced to allow other elements to be considered
as self elements which lie close to the self-center. If an element lies within a
detector (hypersphere), which in effect would be close to the self-center given
a certain radius, then it is classified as non-self, otherwise as self. An element5

e lies within a detector d = (cd, rns), if the Euclidean distance dist(c, e) =
(
∑n

i=1
(ci − ei)

2
)1/2

< rns. Ji and Dasgupta [6] proposed a real-valued negative
selection algorithm with variable-sized detectors (termed V-Detector) — the
algorithm is presented in the appendix and illustrated in figures 1(b), 1(c), 1(d).
The algorithm randomly determines a center of a detector which must not lie
within the hypersphere of a self-element. The radius is dynamically resized until
the boundary of the region comes in contact with a self-element. The algorithm
terminates if a predefined number of detectors are generated, or a pre-determined
proportion of non-self space is covered. For all our experiments contained in this
paper, we employed the algorithm proposed by Ji and Dasgupta [6].

3.2 Real-Valued Positive Selection

The real-valued positive selection algorithm was informally described by Ebner
et al. [10] and formally by Stibor et al. [11]. The main difference to the negative
selection is that no non-self detectors exists. Instead, each self element contains
a self-detector which classifies unseen elements. An element which lies within the
self-detector is classified as self, otherwise as non-self. This means that no detec-
tor generation phase is necessary, but the classification decision for each unseen
element is computationally expensive, in contrast to the real-valued negative
selection.
5

n dimensional point

4 Investigating the Real-Valued Negative Selection

Algorithm with Variable-Sized Detectors

As explained above, the V-Detector algorithm randomly generates detectors with
a variable-sized radius. In order to assess how well the algorithm generates a set
of non-self detectors and terminates, we made use of a simple toy problem. We
created a simple two-dimensional artificial data set with 9 self elements (see
Fig. 1(a)). We ran the algorithm using the same parameters as [6] :

Maximum Self Coverage MSC = 99.99 %

Maximum Number of Detectors Tmax = 1000

The results are visualized in figure 1. Figure 1(b) shows the generated detectors
for the artificial data set for self-radius rs = 0.05 and estimated coverage c0 =
99 %. It can be noted that the algorithm generates variable-sized detectors which
cover the non-self space with a limited number of overlapping detectors. Two
independent algorithm runs for rs = 0.05 and c0 = 80 % were also performed (see
Fig. 1(c), 1(d)). It can be seen, that this random detector generation and coverage
estimation method varies a great deal with equal parameter settings. To obtain
a steady space coverage for each independent algorithm run, the parameter c0

must be close to 100 %. Consequently, this increases the runtime complexity
required to generate detectors. This is now analyzed in the following section.

4.1 Algorithm Termination

First, it can be seen (algorithm 1), that the termination condition in line 22 is
not useful, because T never has a value higher than 1. Once increased to 1 (see
line 21), T is set to 0 (see line 5) in the same outer repeat loop and therefore,
the termination condition is line 22 is never satisfied.

Another algorithm termination is reached (see line 11), when the condition
t ≥ 1/(1 − c0) is satisfied. Let x ∈ ∆ denote, that x is covered by at least
one detector. The variable t is only increased, when x ∈ ∆ (see line 9). When
a random sample x /∈ ∆ is chosen — falls within a self-element circle or an
uncovered gap — then t is set 0 (see line 4). Therefore, the termination criteria
is guaranteed, when a sample sequence x1,x2, . . . ,xj ∈ ∆ of length j is found,
where j = t/δ. The term δ denotes the average number of detectors covering a
sample x. The justification behind δ is that a sample x can be covered by more
than one detector, because the detectors can overlap and therefore the variable t
can be increased multiple times. The probability of finding a sequence of length
j, can be calculated with the geometric distribution and the approach xj+1 /∈ ∆.

The probability to find in j +1 random sampling trials j successes before the
first failure is :

P (xj+1 /∈ ∆) = p(1− p)j (1)

where p is the probability that a random sample x is covered by at least one
detector. Term 1 only depends on p and j. The higher the number of self ele-
ments or the larger the self-radius, the lesser the probability of finding a sample

self−radius r

(a) An artificial data set con-
taining 9 self-elements with self-
radius rs pictured as the grey
circles with a black center cs. It
contains no V-detectors.

(b) 41 generated V-detectors for rs =
0.05, c0 = 99 %.

(c) First independent algorithm run
which generated 26 V-detectors for
rs = 0.05, c0 = 80 %.

(d) Second independent algorithm run
which generated 11 V-detectors for
rs = 0.05, c0 = 80 %.

Fig. 1. The real-valued negative selection algorithm with variable-sized detectors
applied on an artificial data set for different estimated coverages.

sequence which guarantees the algorithm termination. Furthermore, the proba-
bility is strongly biased by parameter c0. A higher confidence of the estimated
coverage c0 decreases the probability of finding a termination sample sequence
and therefore increases the runtime complexity. In the work [6], the runtime
complexity of the V-Detector algorithm is estimated by O(|D| · |S|) without a
probabilistic approach. As the detectors are generated randomly, we suggest a
probabilistic runtime complexity estimation.

A final point to note is that the simple random generation and coverage
estimation method employed, induces the steady space coverage problem. This
is explored with a high-dimensional dataset and discussed in section 6.1.

5 Statistical Novelty Detection

Through the application of statistical methods, novelty can be quantified as a
deviation from a probability distribution p(x) which is generated from normal
data. The quantity can be expressed by a threshold, where (unseen) data samples
for which p(x) falls below this threshold, are considered as abnormal samples. By
applying such a threshold, all new data samples can be classified into two classes
C0 or C1, where the training data are assumed to be drawn entirely from C0. To
minimize the probability of misclassification, a new data sample x is assigned to
the class with the larger posterior probability [12]. This classification decision is
based on the Bayes theorem and can be written as :

Decide C0 if p(x|C0) >
p(x|C1)P (C1)

P (C0)
; otherwise decide C1

where P (Ck) is the prior probability of a sample belonging to each of the classes
Ck and p(x|Ck) is the class-conditional density. The class-conditional density
p(x|C1) of the novel data represents the threshold and is unknown a-priori.
Therefore, it can be modeled as a uniformly distributed density (see Fig. 2),
which is constant over some large region of the input space [13]. The point of
intersections divide the input space into two decision regions R0 and R1. An
input sample falling in region R0 is assigned to class C0, otherwise it falls in
region R1 and is assigned to class C1.

5.1 Parzen-Window Estimators

Parzen-Window is a nonparametric method for estimating density functions [14].
Given a set A = {x1,x2, . . . ,xn} of n i.i.d. samples drawn according to an un-
known density function p(x). The Parzen-Window method estimates p(x) based
on the n samples in A by

p̂(x) =
1

nh

n
∑

i=1

K

(

x− xi

h

)

PSfrag replacements

R0 R1R1

p(x|C0)P (C0)

p(x|C1)P (C1)

x

Fig. 2. Bayesian decision for determining whether an input sample belongs to class
C0 (falling in region R0) or C1 (falling in region R1) modeled with class-conditional
density functions.

where K is a kernel function which must satisfies the condition
∫ +∞

−∞

K(x)dx = 1

and h the window width (also called smoothing parameter). For our experiments
we choose the multivariate Gaussian kernel function

p̂(x) =
1

n(2π)d/2σd

n
∑

i=1

exp

{

−
||x− xi||2

2σ2

}

where xi are training samples which characterize the normal behavior and d is
the dimensionality of the data space. The Gaussian kernel function is completely
specified by the variance parameter σ which control the degree of smoothness of
the estimated density function. In our experiments (see section 6), we used the
proposed variance parameter σ = 0.01 [15].

Through the combination of the Parzen-Window method and the Bayes clas-
sification method, it is possible to obtain a statistical classification technique.
First, a density function p̂(x) is estimated based on the“normal”training samples
and second, a uniformly distributed density function6 pu(x) is a-priori modeled.
An unseen sample which falls in region R0 is classified as normal, otherwise it
is said to falls in the region R1 and is classified as an anomalous sample.

5.2 One-Class Support Vector Machine

In many applications it is sufficient to estimate the support of the probability
distribution, as opposed to the full density. A one-class Support Vector Machine

6 the threshold

(termed one-class SVM) avoids estimating the full density. Instead, it estimates
quantiles of the multivariate distribution, i.e. its support. The one-class SVM
maps the input data into a higher-dimensional feature space F via a nonlinear
mapping Φ and treats the origin as the only member of the second class. In
addition, a fraction ν of “outliers” are allowed, which lie between the origin and
the hyperplane (the hyperplane has maximum distance to the origin, see Fig. 3).
In other words, the one-class SVM algorithm returns a function f that takes the
value +1 in a region where the density “lives” and −1 elsewhere and therefore,
for a new point x, the value f(x) is determined by evaluating which side of the
hyperplane it falls on, in feature space.

origin

PSfrag replacements

F

νl outliers

Φ

Fig. 3. Map the training data into a high-dimensional feature space F via Φ. Construct
a separating hyperplane with maximum distance to the origin, with the constrains that
νl outliers lie between the origin and the hyperplane.

More precisely, the optimal hyperplane is constructed, by solving the optimiza-
tion problem

min
α

1

2

l
∑

i,j=1

αiαjk(xi,xj)

subject to 0 ≤ αi ≤ 1/(νl), i = 1, . . . , l
l
∑

i=1

αi = 1

where α1...l are Lagrange multipliers, k the kernel function and x1...l the training
samples.
By solving this optimization problem, one obtains the decision function

f(x) = sgn

(

l
∑

i=1

αik(x,xi)− ρ

)

which will be positive for most examples xi in the training set. The value of ρ
can be recovered by exploiting the fact, that for any Lagrange multipliers αi,
the corresponding pattern xi satisfies

ρ = (w · Φ(xi)) =
∑

j

αjk(xj ,xi)

where w is the normal vector of a hyperplane.
For our experiments, we used the one-class SVM implementation LIBSVM 2.6 [16].
LIBSVM is a program, which provides several SVM algorithms for classifica-
tion and regression, including the one-class SVM implementation proposed by
Schölkopf et al. [8]. The default kernel (radial basis function) and the default
values of the parameters for the one-class SVM are used.

6 Classification Results and Comparative Study

We wished to explore the effectiveness of all of these approaches on network in-
trusion detection problems. For our experiments we made use of the dataset from
taken from KDD Cup 1999 [17]. This data set contains a wide variety of network
intrusions and normal network traffic. The data set consists of connection-based
network traffic data, where each record corresponds to one network connection.
A network connection is a sequence of Internet packets sent during a period of
time between two IP addresses. A complete record is described as a network
connection vector which contains 38 continuous and 3 symbolic fields and an
end-label (attack type or normal behavior).

Example 1. 0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,511,511,0.00,0.00,0.00,0.00,1.00,0.00,0.00,

255,243,0.95,0.01,0.95,0.00,0.00,0.00,0.00,0.00,smurf

Example 2. 0,tcp,http,SF,239,968,0,0,0,0,0,1,0,0,0,0,0,0,0,0,

0,0,3,3,0.00,0.00,0.00,0.00,1.00,0.00,0.00,3,239,

1.00,0.00,0.33,0.03,0.00,0.00,0.00,0.00,normal

Example 1 shows a connection vector which characterizes a Denial of Service
(short DoS) attack. A DoS attack is an attack on a computer system, or net-
work, that causes a loss of service to users by consuming the bandwidth of the
victim network or overloading the computational resources of the victim system.
As a concrete example 1 characterizes a smurf DoS attack which uses spoofed
broadcast icmp messages to flood a target system. In contrast, example 2 shows
a connection vector which characterizes a “normal” access to a HTTP server.
The complete KDD dataset contains 3925650 abnormal (80, 14%) and 972780
normal (19, 86%) connection vectors and have a total size of ca. 700 mb. The
abnormal samples are partitioned in four categories :

– DOS (≈ 98, 92 %) : denial-of-service, e.g. syn flood.
– R2L (≈ 0, 0286 %) : unauthorized access from a remote machine, e.g. guessing

password.
– U2R (≈ 0, 0013 %) : unauthorized access to local superuser (root) privileges,

e.g., various “buffer overflow” attacks.
– probing (≈ 1, 05 %) : surveillance and other probing, e.g., port scanning.

Due to the high runtime complexity of the Parzen-Window method and the real-
valued positive selection, our experiments were performed on a reduced dataset.
More precisely, we randomly created 20 subsets S1, . . . , S20 from the complete
KDD dataset. Each subset Si contains randomly determined 1 % of normal and
1 % of anomalous data from the whole KDD dataset. There are 39256 anomalous
and 9727 normal connection vectors in each subset. Furthermore, each discrimi-
native symbolic string is mapped on to a natural number, i.e. icmp→ 0, tcp→ 1,
udp → 2, and so on. The dataset is then normalized in the unitary hypercube
[0, 1]41 using the min-max normalization.

Each classification method is trained from subset Si with normal samples
only. The test run is performed on the whole subset Si (normal and anomalous
samples). After performing all 20 classification runs for each subset S1, . . . , S20,
the mean detection rate, mean false alarm rate and the standard deviations were
recorded and are presented in table 1. The detection rate and false alarm rate is
calculated as follows :

detection rate =
anomalous sample correctly classified

total anomalous samples
=

TP

TP+FN

false alarm rate =
normal sample incorrectly classified

total normal samples
=

FP

FP+TN

The abbreviations TP,FP,TN,FN are used in the ROC7 [18] analysis to evaluate
the performance of classification algorithms. Given a classifier and a sample,
there are four different outcomes. If the sample is anomalous and it is classified
as anomalous, it is counted as a true positive (TP); if it is classified as normal,
it is counted as a false negative (FN). If the sample is normal and it is classified
as normal, it is counted as a true negative (TN); if it is classified as anomalous,
it is counted as a false positive (FP).

As the real-valued negative selection is the only method which has a random
behavior8 each run of the algorithm was repeated 20 times for each subset Si.

The parameters for the real-valued negative selection were chosen as outlined
in [6] (MSC = 99.99 %, Tmax = 1000, c0 = 99 %). Initial experiments with real-
valued negative selection were performed with self-radius rs = 0.1 and rs =
0.05. For this radius, the algorithm produces very poor classification results.
Therefore, several “empirical radius searching” runs were performed to find an
effective self-radius. The radius lengths shown in table 1 resulted in the best
classification performance. These radius lengths are also used for the positive
selection algorithm.

7 Received Operating Characteristic
8 generates detectors randomly

Table 1. Classification Results for KDD dataset

Algorithm Detection False Alarm # Detectors or
Rate Rate # Support Vectors

Mean SD Mean SD Mean SD

V-detectorrs=0.000005 2.66 8.35 0.00 0.00 1.37 0.52
V-detectorrs=0.00001 2.40 7.12 0.00 0.00 1.36 0.51
V-detectorrs=0.00005 1.75 6.05 0.00 0.00 1.39 0.56
V-detectorrs=0.0001 1.58 5.73 0.00 0.00 1.33 0.50
V-detectorrs=0.05 1.21 4.59 0.00 0.00 1.48 0.59
V-detectorrs=0.1 0.65 3.46 0.00 0.00 1.59 0.67

Self-Detectorrs=0.000005 100 0.00 0.00 0.00 9727 0
Self-Detectorrs=0.00001 100 0.00 0.00 0.00 9727 0
Self-Detectorrs=0.00005 100 0.00 0.00 0.00 9727 0
Self-Detectorrs=0.0001 100 0.00 0.00 0.00 9727 0
Self-Detectorrs=0.05 100 0.00 0.00 0.00 9727 0
Self-Detectorrs=0.1 99.99 0.02 0.00 0.00 9727 0

ocSVMν=0.005 99.78 0.03 0.05 0.02 55.70 1.56
ocSVMν=0.01 99.82 0.02 0.99 0.02 103.40 1.50
ocSVMν=0.05 99.87 0.02 4.95 0.03 491.15 1.27

Parzen-Windowu=0.005 99.93 0.02 0.00 0.00 — —
Parzen-Windowu=0.01 99.93 0.02 0.00 0.00 — —
Parzen-Windowu=0.05 99.93 0.02 0.00 0.00 — —

6.1 Discussion

In table 1 one can see that real-valued positive selection (Self-Detector) method
yields the highest detection rate and the lowest false alarm rate. A benefit of
this method is that no training phase is required, and a nearly zero standard
deviation of the detection rate for each threshold rs is achieved. However, this
method is computationally very expensive, due to the fact that the Euclidean
distance is calculated from a sample to each self-element. The Parzen-Window
method yields likewise a hight detection rate and a low false alarm rate. This
method also requires no training phase and has a very low standard deviation of
the detection rate. However, this method is computationally expensive9, because
each training sample has to calculate the class conditionally probability for a test
sample. The one-class SVM achieves similar high detection rates and low false
alarm rates. Through the application of the default radial basis kernel, the test
data is nearly optimally separable in high-dimensional feature space. This is
shown by the fraction of outliers compared to the false alarm rate. For ν = 5%
outliers, the false alarm rate is nearly 5%. For ν = 0.5% outliers, the false alarm
rate is 0.5%. The main advantage of the one-class SVM, in comparison with the
Parzen-Window method, is the low computational complexity to classify new
elements. The one-class SVM considers only a subset of the training samples —
the support vectors — to classify new elements. Results reveal, that the real-
valued negative selection with variable-sized detectors is not competitive to the

9 exponential operation and several arithmetic operations

statistical techniques and to the Self-Detector method presented in this paper. It
has a very low detection rate and a very high standard deviation — the standard
deviation is far higher than the mean. Though the V-Detector parameter c0 is
99 %, the estimated coverage method (see line 11) seems problematic in high-
dimensional spaces. In the experiments performed, the algorithm terminates due
to the estimated coverage with approximately 1.4 generated detectors.

7 Conclusion

In this paper we have briefly introduced the anomaly detection problem and have
described two statistical anomaly detection approaches — the Parzen-Window
and one-class SVM technique. It has been observed that immune system per-
forms an anomaly detection, in part, through a process negative selection. This
process eliminates self reactive lymphocytes and also ensures that all possible
(including unseen) antigens are recognizable. This negative selection process mo-
tivated computer scientists to develop immune inspired algorithms which work
in a similar way. On such algorithm, the real-valued negative selection algo-
rithm, which employs variable-sized detectors, is such an anomaly detection ap-
proach. We have investigated the termination behavior of the real-valued neg-
ative selection algorithm with variable-sized detectors on an artificial data set.
The investigations reveal that the algorithm termination behavior is sensitive
to several parameters. A high confidence of the estimated detector coverage is
necessary for obtaining a steady space coverage, but consequently increases the
time complexity for the generation of detectors significantly. We then explored
the performance of the algorithm on a high-dimensional data set for anomaly
detection, and compared it to the real-valued positive selection and to two sta-
tistical anomaly detection techniques. The classification results revealed that the
real-valued positive selection outperformed the other classification methods for
this data set experiment. However, real-valued positive selection is limited due
to the high complexity involved. The Parzen-Window method, likewise achieved
a high classification performance, but has same complexity problems as the real-
valued positive selection. The one-class SVM achieved a good classification per-
formance and has an acceptable runtime complexity. The real-valued negative
selection with variable-sized detectors has poor classification performance on the
high-dimensional KDD data set.

It is difficult to conclude that the real-valued negative selection is in general
not appropriate on high-dimensional data sets. However this work revealed sev-
eral problems of the V-Detector algorithm which where not mentioned before.
Nevertheless it may appear that the negative selection principle would seem to
be a technique that is not appropriate for real-world anomaly detection prob-
lems [11,19].

References

1. Forrest S., Perelson A.S., Allen L., Cherukuri R.: Self-nonself discrimination in a
computer. In: Proceedings of the 1994 IEEE Symposium on Research in Security
and Privacy, IEEE Computer Society Press (1994)

2. D’haeseleer, P.: An immunological approach to change detection: Theoretical re-
sults. In: Proc. 9th IEEE Computer Security Foundations Workshop. (1996) 18–26

3. Hofmeyr S. A., Forrest S., D’haeseleer P.: An immunological approach to dis-
tributed network intrusion detection. In: First International Workshop on the
Recent Advances in Intrusion Detection. (1998)

4. González, F., Dasgupta, D., Kozma, R.: Combining negative selection and classi-
fication techniques for anomaly detection. In: Congress on Evolutionary Compu-
tation, IEEE (2002) 705–710

5. González, F., Dasgupta, D., Niño, L.F.: A randomized real-valued negative selec-
tion algorithm. In Timmis, J., Bentley, P.J., Hart, E., eds.: Proceedings of the 2nd
International Conference on Artificial Immune Systems (ICARIS). LNCS, Edin-
burgh, UK, Springer-Verlag (2003) 261–272

6. Ji, Z., Dasgupta, D.: Real-valued negative selection algorithm with variable-sized
detectors. In: Genetic and Evolutionary Computation – GECCO-2004, Part I.
Volume 3102 of LNCS., Seattle, WA, USA, Springer-Verlag (2004) 287–298

7. Marsland, S.: Novelty detection in learning systems. Neural Computing Surveys 3

(2003)
8. Schölkopf, B., Platt, J.C., Shawe-Taylor, S.T., Smola, A.J., Williamson, W.: Es-

timating the support of a high-dimensional distribution. Technical Report MSR-
TR-99-87, Microsoft Research (MSR) (1999)

9. Müller, K.R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction
to kernel-based learning algorithms. Transactions on Neural Networks 12 (2001)
181–201

10. Ebner, M., Breunig, H.G., Albert, J.: On the use of negative selection in an artificial
immune system. In: GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference, New York, Morgan Kaufmann Publishers (2002) 957–964

11. Stibor, T., Mohr, P., Timmis, J., Eckert, C.: Is negative selection appropriate for
anomaly detection ? In: Genetic and Evolutionary Computation – GECCO. (to
appear) (2005)

12. Duda, R.., Hart, P.E., Stork, D.G.: Pattern Classification. Second edn. Wiley-
Interscience (2001)

13. Bishop C.M.: Novelty detection and neural network validation. In: IEE Proceed-
ings: Vision, Image and Signal Processing. Volume 141. (1994) 217–222

14. Silverman B.W.: Density Estimation for Statistics and Data Analysis. Chapman
and Hall (1986)

15. Yeung, D.Y., Chow, C.: Parzen-window network intrusion detectors. In: Proc. of
the Sixteenth International Conference on Pattern Recognition. (2002) 385–388

16. Chang, C.C., Lin, C.J.: LIBSVM: a Library for Support Vector Machines
(http://www.csie.ntu.edu.tw/∼cjlin/papers/libsvm.pdf). (2004)

17. Hettich, S. and Bay, S. D.: KDD Cup 1999 Data (1999) http://kdd.ics.uci.edu.
18. Fawcett, T.: ROC graphs: Notes and practical considerations for data mining

researchers. Technical Report HPL-2003-4, Hewlett Packard Laboratories (2003)
19. Stibor, T., Timmis, J., Eckert, C.: On the appropriateness of negative selection

defined over hamming shape-space as a network intrusion detection system. In:
Proceedings of the 2005 IEEE Congress on Evolutionary Computation. (to appear),
Edinburgh, UK, IEEE Press (2005)

Appendix

Algorithm 1: Generate V-Detector Set

input : S = Set of self elements, Tmax = max. number of V-Detectors,
rs = self radius, c0 = estimated coverage, MSC = max. self

coverage
output: D = Set of generated V-Detectors
begin1

D ←− ∅2

repeat3

t←− 04

T ←− 05

r ←−∞6

x←− random point from [0, 1]n7

foreach d ∈ D do8

// Euclid. distance between detector center cd and x

// is lesser than Non-Self radius rns of detector d
if dist(cd,x) ≤ rns then9

// point x is covered by a detector

t←− t + 110

if t ≥ 1/(1− c0) then11

return D12

goto 5:13

// find the closest distance to a self element margin

foreach s ∈ S do14

l ←− dist(cs,x)15

if l − rs ≤ r then16

r ←− l− rs17

if r > rs then18

// Add a new detector d to set D
D ←− D ∪ {d = (x, r)}19

else20

T ←− T + 121

if T > 1/(1−MSC) then22

exit23

until |D| = Tmax24

end25

