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Abstract. Affinity functions play a major role within the artificial im-
mune system (AIS) framework and crucially bias the performance of
AIS algorithms. In the problem domain of self/non-self discrimination
by means of negative selection, affinity functions such as the Hamming
distance or the r-contiguous distance are frequently applied to measure
distances in binary data. In recent years however, several limitations
and problems with these distance measurements in negative selection
have been identified. We propose to measure distances in binary data by
means of probabilities which are modeled with a kernel estimator. Such
a probabilistic model is preeminently applicable for the self/non-self dis-
crimination problem. We underpin our proposal with an empirical study
on artificially generated and real-world datasets.

1 Introduction

Self/non-self discrimination models are discussed intensively in immunology and
also in the artificial immune system (AIS) community. In the field of AIS the
negative selection is a popular, however also a controversial approach to dis-
criminate self from non-self [1],[2]. The discrimination capability of negative
selection is biased by the chosen shape space and the used affinity functions. In
binary shape space (also called Hamming shape space) all immune components
are represented as bit strings. The affinity between any two bit strings is mea-
sured with affinity functions such as the Hamming and r-contiguous distance.
In recent years, however, research revealed that affinity functions used in neg-
ative selection induce manifold problems. The problems can be summarized as
follows. Poor generalization capabilities, that is, the accurate self/non-self pre-
diction of unseen bit strings [2]. Infeasible computational complexity of finding
detectors [2]. To overcome these problems, it seems reasonable to look beyond
the “classical” affinity functions proposed in the field of AIS.

The problem of self/non-self discrimination can be stated as follows. Given
self data, that is, a sample S of bit strings which characterizes self:

– Does an unseen bit string u belong to self?
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This problem is usually tackled by using negative selection and corresponding
affinity functions for binary data. Observe that this problem cannot be answered
satisfyingly without giving a clear specification of self. In other words, the prob-
lem cannot be fitted in any machine learning framework.

By considering this problem from a statistical point of view, it can be equiva-
lently formulated as follows:

– Does u originate from the same probability distribution as bit strings in S?

This second question can be answered by assuming that S is i.i.d. generated by
some unknown distribution which corresponds to self and that self data occurs
concentrated. This leads to the problem of estimating the underlying probabil-
ity distribution which generates S and finally to the rejection of data of low
probability. Once the underlying probability distribution is properly modeled,
membership queries, that is the first question, can be also answered.

In their seminal paper Kullback and Leibler stated [3]:

“We are also concerned with the statistical problem of discrimination by
considering a measure of the “distance” or “divergence” between statis-
tical populations in terms of our measure of information.”

By reviewing known problems in negative selection, it seems therefore reason-
able to tackle the self/non-self discrimination problem by means of a statistical
approach which will be discussed and empirically investigated in this paper. We
structure the paper as follows: The kernel estimator method for binary data is
explained in section 2. An experiment on artificially generated data is provided
in section 2.1. The statistical discrimination function is presented in section 3.
In section 4, an additional experiment is performed to explore whether regions
where most of the self data is concentrated can be appropriately modeled. Results
of detecting corrupted handwritten digits are presented in section 5. Conclusions
and outlooks are provided in section 6.

2 Kernel Estimator for Binary Data

Kernel estimators belong to the class of non-parametric models and are well-
known methods for estimating densities for continuous domains [4],[5]. For binary
data, that is discrete data, kernel estimators such as Parzen Window or Nearest-
Neighbor are not applicable due to their continuous nature. Aitchison and Aitken
proposed a kernel estimator for binary data [6].

Given sample S = {xt}N
t=1 from {0, 1}l and kernel function

Kh(x|y) =

⎧
⎨

⎩

hl−d(x,y)(1 − h)d(x,y) for 1
2 ≤ h < 1{

1 (x = y)
0 (x �= y) for h = 1

(1)
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Fig. 1. Coherence between kernel function Kh(·|·) and Hamming distance d(·, ·). The
Hamming distance from 0111 to all bit strings sitting on the same ring is related to the
probability mass function Kh(·|0111). Note that the Hamming distance is increasing
from center 0111 to bit strings sitting on the outer rings at one bit per ring.

where

d(x,y) = (x − y)T (x − y) ≡
l∑

i=1

xi XOR yi

is the Hamming distance, and h the bandwidth parameter. The true underlying
probability distribution which corresponds to sample S can be estimated by:

P̂ (x|S) =
1
N

N∑

i=1

Kh(x|xi). (2)

The kernel function Kh(x|y) is a probability mass function and is related to the
Hamming distance between x and y (see Fig 1). Loosely speaking, the smaller
the Hamming distance the larger the probability. Analogous to continuous kernel
estimators, the bandwidth parameter h in (2) controls the smoothness, i.e. the
influence of the surrounding bit strings. The smallest bandwidth h = 1/2 gives
the uniform distribution P̂ (x|S) = (1/2)l for all x ∈ {0, 1}l, whereas the largest
bandwidth h = 1 gives the distribution of the relative frequencies.

To find an appropriate value of bandwidth parameter h such that consistency
properties are obeyed, Aitchison and Aitken proposed to maximize:

N∏

i=1

P̂ (xi | S \ {xi}) (3)

whereS\{xi}denotes sampleSwith excludedbit stringxi (leave-one-outmethod).
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Note that (3) can lead to numerical instabilities for large sample sizes. To avoid
such a problem, one can also maximize the corresponding log-likelihood value:

N∑

i=1

log P̂ (xi | S \ {xi}). (4)

It is worthwhile to notice that by maximizing (3), (4) respectively, one mutually
minimizes the Kullback-Leibler divergence [3]:

N∑

i=1

G(xi) log

(
G(xi)

P̂ (xi|S)

)

. (5)

The Kullback-Leibler divergence can be considered as a closeness measure be-
tween the true underlying probability distribution G(x) and the estimated dis-
tribution P̂ (x|S). The smaller the value of (5), the more “similar” are the true
and estimated probability distribution.

2.1 Experiment on Data Generated by Mixture of Multivariate
Bernoulli Distributions

For creating binary self data, it is helpful to use a generative model such that
samples can be generated from the true underlying distribution which is specified
by some parameters. A multivariate Bernoulli distribution is a generative model
and fulfills this criterion. To be more precise, the distribution is specified by
parameter vector Θ ∈ [0, 1]l and takes binary values xi = 1 with probability
Θi and xi = 0 with the complementary probability 1 − Θi, for i = 1, . . . , l. It
therefore has probability mass function:

P (x|Θ) =
l∏

i=1

Θxi

i (1 − Θi)1−xi . (6)

To model higher order correlations in the generated samples, it is necessary to
combine mixtures of multivariate Bernoulli distributions:

P (x|Θ, α) =
M∑

m=1

αm P (x|Θm), (7)

where the mixture proportion α ∈ R
M has to obey the convex combination∑M

m=1 αm = 1 with αm ≥ 0 and Θ is composed of (Θ1, Θ2, . . . , ΘM ).
In this experiment we specified M = 3 mixtures of multivariate Bernoulli

distributions with following parameters:

α :=

⎡

⎢
⎣

1
9
3
9
5
9

⎤

⎥
⎦ , Θ =

⎡

⎢
⎣

Θ1

Θ2

Θ3

⎤

⎥
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⎡

⎢
⎣
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⎤

⎥
⎦ ,

and denote the true underlying distribution as G(x) ≡ P (x|Θ, α).
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(a) The dotted line denotes the value of
h where the smallest Kullback-Leibler di-
vergence value between the true prob-
ability distribution G(x) and kernel es-

timated probability distribution bP (x|S)
can be found.
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Fig. 2. Coherence between kernel parameter h and Kullback-Leibler divergence (left),
and log-likelihood evaluation by means of the leave-one-out method (right). The value
of h which maximizes (4) corresponds to the smallest Kullback-Leibler divergence value.

In non-parametric models no parametrized distribution has to be fitted in the
samples; therefore, one has to determine only the suitable bandwidth parameter
h. In this experiment the parameter h is run from 1/2 to 1. The corresponding
value of (4) as well as the Kullback-Leibler divergence between G(x) and P̂ (x|S)
are depicted in Figure 2.

One can observe that by maximizing (4) one mutually minimizes the Kullback-
Leibler divergence between true the probability distribution and the kernel esti-
mated.To say it the otherwayaround, givena sampleSwhich characterizes self and
bandwidthparameterhwhichmaximizes (4).One canmodel theunderlyingproba-
bilitydistributionwhich corresponds toS andhence is able todiscriminate self from
non-self by means of probabilities. Note that the Hamming distance is still used as
a measurement, however expressed in terms of weighted kernel estimated probabil-
ities. This allows the modeling of smooth discrimination boundaries, whereas the
plain Hamming distance does not offer such degrees of smoothness (see [7]).

3 Statistical Discrimination in Binary Data

Let S be a sample which characterizes self and h the bandwidth parameter which
is found such that (4) is maximized. A probabilistic discrimination function for
the self/non-self problem1 can be defined as follows:
1 In the field of machine learning this equivalent problem is termed outlier detection

or novelty detection.
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D(x, t) =
{

P̂ (x|S) ≥ t, self
otherwise, non-self

(8)

where x is the to classified bit strings and t some threshold. By specifying a
value for t, one obtains enclosed decision region(s) such that most of the support
of the distribution is captured. In other words, if x is within the region(s) where
most of the self data is concentrated, then x belongs to self otherwise it belongs
to non-self. It is worthwhile to mention that discrimination function D can be
extended to a multi-class decision function by assigning x to that class where
the corresponding class-conditional probability is largest.

4 Experiment on Data Generated by Mixture of Gaussian
Distributions

Due to the fact that mixtures of multivariate Bernoulli distributions are hardly
to visualize, a second experiment is performed. In this experiment we explore
whether regions, where most of the self data is concentrated, can be appropri-
ately modeled. Therefore, self data is generated by a mixture of 2-dim. Gaussian
distributions with different mean vectors and covariance matrices and consists
of 5000 data points. The generated self data is visualized in Figure 3(a), the
corresponding density image is depicted in Figure 3(b).

One can see in Figure 3(a) that self data is concentrated in regions of high
density. This coincidence with our assumption and leads to the problem of finding
regions where most of the self data is concentrated.

Note that the domain of (2) is {0, 1}l. We therefore use the mapping from
R

2 → {0, 1}l proposed in [8]. That is, the data is min-max normalization to
[0, 1]2 and discretized to bit strings of length l = 16

b1, b2, . . . , b8
︸ ︷︷ ︸

bx

, b9, b10, . . . , b16
︸ ︷︷ ︸

by

,

where the first 8 bits encode the integer x-value

ix := �255 · x + 0.5	
and the last 8 bits the integer y-value

iy := �255 · y + 0.5	,
that is,

[0, 1]2 → (ix, iy) ∈ (1, . . . , 256) × (1, . . . , 256)

→ (bx, by) ∈ {0, 1}8 × {0, 1}8.

By means of the leave-one-out method bandwidth parameter h = 0.909 is deter-
mined. The corresponding density image is depicted in Figure 4(b), where each
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Fig. 3. Self data is sampled from a mixture of multivariate Gaussian distributions
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Fig. 4. Coherence between different bandwidth values and estimated models

pixel in the 256 × 256 grid represents a bit string of length l = 16. The color
corresponds to the probability P̂ (x|S). For the sake of comparison, two addi-
tional density images of bandwidth value h = 0.55 and h = 1 are depicted (see
Fig. 4(a), 4(c)). One can observe that the true underlying distribution can be
closely approximated if an appropriate value of h is determined. For a too over-
smoothed bandwidth value h = 0.55 the resulting model is underfitted, whereas
for h = 1 the model is overfitted. For h = 0.909 the probability distribution is
appropriately modeled, thus good generalization is obtained.
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5 Handwritten Digit Recognition Experiment

Recognizing handwritten digits is a challenging real-world problem in the field
of machine learning. In this experiment, we focus on the problem of outlier
detection, that is, the detection of digits which are corrupted. In the language of
self/non-self discrimination, self of each digit is modeled as shown in section 2
and corrupted digits are detected by means of decision function (8).

To obtain meaningful results regarding the robustness of the kernel estimator
method, experiments on two popular handwritten digits datasets (USPS and
MNIST database) are performed.

The USPS database2 contains handwritten digits scanned from envelopes by the
U.S. Postal Service. The digits are size-normalized in a 16× 16 fixed image of gray
color values in the range [−1, 1]. The database consists of 7291 training examples
and 2007 testing samples which are partitioned in digit sets 0 to 9 (see Table 1).

Table 1. Number of digits in training and testing set in the USPS database

digit 0 1 2 3 4 5 6 7 8 9

training set 1194 1005 731 658 652 556 664 645 542 644

testing set 359 264 198 166 200 160 170 147 166 177

The USPS database contains a number of corrupted digits, which not even
humans can correctly classify (human error rate 2.5%) and therefore is a chal-
lenging benchmark. However, the database is also criticized due to their noisy
nature [9].

The MNIST database3 contains also handwritten digits. However if one com-
pares the two databases, then one can observe that the MNIST database has
cleaner digits thus becomes the state of the art benchmark database in recent
years. The digits in the MNIST database are centered and size-normalized in
a 28 × 28 fixed-size image of gray color values {0, 1, . . . , 255}784. The MNIST
database consists of 60000 training examples and 10000 testing samples which
are partitioned in digit sets 0 to 9 (see Table 2).

Table 2. Number of digits in training and testing set in the MNIST database

digit 0 1 2 3 4 5 6 7 8 9

training set 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949

testing set 980 1135 1032 1010 982 892 958 1028 974 1009

To obtain comparative results between the two databases, digits in the USPS
database are min-max normalized from [−1, 1] to gray color values
{0, 1, . . . , 255}256. Both databases are finally binarized by means of:
2 Available at: http://www-stat.stanford.edu/∼tibs/ElemStatLearn/datasets/
3 Available at: http://yann.lecun.com/exdb/mnist/index.html
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B(z, tbw) =
{

zi ≤ tbw , 0
otherwise , 1 (9)

where threshold tbw = 128 is chosen and z ∈ {0, 1, . . . , 255}256 (USPS database),
z ∈ {0, 1, . . . , 255}784 (MNIST database), respectively.

The bandwidth value h of each digit class for both training sets is determined
by means of the leave-one-out method and results in:

digit 0 1 2 3 4 5 6 7 8 9

USPS h 0.917 0.99 0.871 0.888 0.906 0.877 0.92 0.938 0.889 0.93
MNIST h 0.94 0.984 0.928 0.935 0.945 0.936 0.946 0.956 0.929 0.95

5.1 Results

Both testing sets contain no information regarding the magnitude of corruption
of the digits. As a result, it is difficult to obtain meaningful outlier detection
results. Due to such difficulties, the digits of each class are ranked. To be more
precise, the digits of each class are ranked in descending order regarding their
class-conditional probabilities (see Fig. 5). One can see that corrupted digits have
small class-conditional probabilities and hence can be recognized as outliers by
decision function D with regard to some threshold value t. Furthermore, one can
observe that some less corrupted digits (“7”) which are written according to the
European standard have small probabilities. This is an undesirable result and is
caused by the fact that the training set contains an underrepresented amount
of those digits. This problem can be addressed by tuning the corresponding
bandwidth parameter towards more smoothness. Moreover, one can observe that
in the USPS database the mislabeled digit 1 has a large estimated probability
and thus can not be detected as an outlier.

Table 3. State of the art classification results on testing sets USPS and MNIST. For
a detailed overview see [9], pp. 219 and pp. 341.

Database Classifier Error rate (%)

USPS

Linear SVM 8.9
Relevance Vector Machine 5.1
Hard margin SVM 4.6
SVM 4.0
Hyperplane on KPCA features 4.0
Kernel Fisher Discriminant 3.7
Virtual SVM 3.2
Virtual SVM, local kernel 3.0

MNIST

Linear classifier 8.4
3-Nearest-Neighbor 2.4

...
...

Virtual SVM with 8 VSVs per SV 0.6
Virtual SVM with 12 VSVs per SV 0.6
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large probability small probability

(a) Digits in USPS database ranked according class-
conditional probabilities in descending order.

large probability small probability

(b) Digits in MNIST database ranked according class-
conditional probabilities in descending order.

Fig. 5. First six digits of each class (testing set) ranked according to the largest, small-
est class-conditional probability, respectively. One can see that corrupted digits have
smaller probabilities compared to “clean” digits having larger probabilities.
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In terms of the overall classification error rate4, the following results are ob-
tained on the testing sets: USPS database 7.47 % and MNIST database 3.92 %.
Compared to the state of the art classification results (see Table 3) our achieved
results are limited competitive. However, one has to mention that the best
achieved classification results are obtained with highly tuned classifiers which
are invariant regarding translation and rotation. Furthermore, we used binary
features rather than gray color values from {0, 1, . . . , 255} and therefore utilized
a poorer feature representation due to the operation on binary data. On the
other hand one should mention that kernel based estimation methods suffer of
high computational complexity. This results from the fact that each bit string is
used to evaluate term (2). However there exist different techniques for reducing
the computational complexity of kernel based estimation methods (e.g. [10],[11]).
These techniques can be also applied to reduce the computational complexity
of term (2). Additional improvements regarding the detection accuracy could be
obtained by applying different binarization techniques.

6 Conclusion

Self/non-self discrimination in binary data is a challenging problem in the field
of AIS. It has been tackled with negative selection and affinity functions such as
the Hamming and the r-contiguous distance. Research results in recent years,
however, revealed manifold problems in negative selection with regard to the
generalization capability, and with regard to the computational complexity. We
proposed to model self by means of a statistical approach, namely by estimating
the underlying probability distribution which corresponds to self with a kernel
estimator. The proposed method was motivated by the fact that the self/non-
self discrimination problem can be clearly specified from a statistical view point.
Such a statistical method is far from any immune-inspired paradigms, however,
overcomes known problems in the immune-inspired negative selection method.
From our point of view it is worthwhile to introduce such a statistically founded
method in the field of AIS. It allows us to consider problems formulated in the
field of AIS from a mathematically founded perspective, rather than by bio-
logically motivated arguments. Observe that in the early days the term “neural
network” was motivated towards modelling networks of real neurons in the brain.
Nowadays:

“The perspective of statistical pattern recognition, however, offers a much
more direct and principled route to many of the same concepts.” [Neural
Networks for Pattern Recognition, C. M. Bishop]
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