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Artificial immune systems (AIS) constitute a relatively new area of bio-inspired computing. Biological models of
the natural immune system, in particular the theories of clonal selection, immune networks and negative selection,
have provided the inspiration for AIS algorithms. Moreover, such algorithms have been successfully employed in
a wide variety of different application areas. However, despite these practical successes, until recently there has
been a dearth of theory to justify their use. In this paper, the existing theoretical work on AIS is reviewed. After
the presentation of a simple example of each of the three main types of AIS algorithm (that is, clonal selection,
immune network and negative selection algorithms respectively), details of the theoretical analysis for each of
these types are given. Some of the future challenges in this area are also highlighted.

1. Introduction

This paper reviews the current theoretical ad-
vances in the area of Artificial Immune Systems
(AIS).AIS have been defined in [1] as

“adaptive systems, inspired by theo-
retical immunology and observed im-
mune functions, principles and mod-
els, which are applied to problem solv-
ing.”

They are one among many types of algorithm
inspired by biological systems, including evolu-
tionary algorithms, swarm intelligence, neural
networks and membrane computing. AIS are
bio-inspired algorithms that take their inspira-
tion from the human immune system. Within
AIS, there are many different types of algorithm,
and research to date has focussed primarily on
the theories of immune networks, clonal selection
and negative selection. These theories have been
abstracted into various algorithms and applied to
a wide variety of application areas.However, as
noted in [2], a somewhat “scattergun” approach
has been adopted, without careful consideration
of whether such immune-inspired approaches are
actually suitable for the application areas in ques-

tion. Whilst there has been a significant amount
of work on the application of AIS algorithms, the
same cannot be said for theoretical research in
the area. Theoretical literature on the topic has
only begun to surface in the past few years, with
the community now acknowledging that theoret-
ical development is of crucial importance.

This paper attempts both to review works re-
lating to the theoretical aspects of AIS, and to
bring together in a single place techniques that
have been used to develop theoretical models of
immune-inspired algorithms and proofs of con-
vergence where appropriate. We have focussed
our discussions on clonal selection based AIS and
negative selection based AIS. This is primarily
because theoretical studies have thus far con-
centrated on these aspects of AIS. Despite no-
table empirical analysis of immune networks [3—
6], very little has been done on theoretical aspects
of these.

1.1. Why Study the Immune System for
Computation?

The immune system is considered to provide

both defence and maintenance of the body. There

are many reasons why the immune system has



been seen as a source of inspiration for the design
of novel algorithms and systems. It has many
properties which it would be desirable for an ar-
tificial system to have, such as the following: self-
organisation; learning and memory; adaptation;
recognition; robustness and scalability.

In the next section we outline the main com-
ponents and process in the immune system and
illustrate the above properties.

2. Biological Underpinnings of Artificial
Immune Systems

The main developments within AIS have fo-
cussed on three main immunological theories:
clonal selection, immune networks and negative
selection. Researchers in AIS have concentrated,
for the most part, on the learning and memory
mechanisms of the immune system inherent in
clonal selection and immune networks, and the
negative selection principle for the generation of
detectors that are capable of classifying changes
in self. In this section, we summarise the im-
munological ideas that have typically been ex-
ploited by the AIS community.

The vertebrate immune system is composed of
diverse sets of cells and molecules that work to-
gether with other systems, such as the neural and
endocrine systems, in order to maintain a home-
ostatic state within the host. The traditionally
held view of the role of the immune system is
to protect our bodies from infectious agents such
as viruses, bacteria, fungi and other parasites'.
Such invading agents are known as pathogens, and
an immune response to a pathogen is provoked by
the recognition of an associated molecule called
an antigen. There are two arms of the immune
system: innate and adaptive. Innate immunity is
not directed towards specific invaders, but against
general pathogens that enter the body [8]. The in-
nate immune system that all vertebrates are born
with plays a vital role in the initiation and regula-
tion of immune responses (including the adaptive
immune response). Specialised cells of the innate
immune system have evolved so as to recognize
and bind to common molecular patterns found

However, not all immunologists would agree that this is
its primary role [7].
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only in microorganisms. However, the innate im-
mune system by no means provides complete pro-
tection of the body, as it is primarily static in
nature.

Adaptive or acquired immunity allows the im-
mune system to launch an attack against any in-
vader that the innate system cannot remove [9].
The adaptive system is directed against specific
invaders, some of which will have been seen before
and others that will not have been previously en-
countered, and is modified by exposure to such in-
vaders. The adaptive immune system mainly con-
sists of lymphocytes, which are white blood cells,
more specifically B and T cells. These cells aid
in the process of recognising and destroying spe-
cific substances. Adaptive immune responses are
normally directed against the antigen that pro-
voked them, and are said to be antigen-specific.
The majority of immunological research has fo-
cussed on the adaptive immune response. How-
ever, there has been a recent focus on the impor-
tance of the innate immune system [10].

2.1. Clonal Selection Theory

The clonal selection theory (CST) [11] is the
theory used to explain the basic response of the
adaptive immune system to an antigenic stimulus.
It establishes the idea that only those cells capa-
ble of recognising an antigen will proliferate, while
those that do not recognise an antigen are selected
against. Clonal selection operates on both T cells
and B cells. In the case of B cells, when their anti-
gen receptors (antibodies) bind with an antigen,
B cells become activated and differentiate into
plasma or memory cells. Prior to this process,
clones of B cells are produced, which themselves
undergo somatic hypermutation, thus introduc-
ing diversity into the B cell population. Plasma
cells produce large numbers of antigen-specific an-
tibodies which, in a successful immune response,
lead to the removal of the antigen. Memory cells
are generally considered to remain within the host
and promote a rapid secondary response upon a
subsequent encounter with the same (or similar)
antigen. This is the phenomenon of acquired im-
munity.
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2.2. Negative Selection

As well as responding to antigen coming from
external invaders, lymphocytes can react to ma-
terial coming from the host’s own cells. If this
leads to a full immune response, this can result
in damage to the host organism (this is called
auto-immunity). Negative selection is a mecha-
nism employed to help protect the body against
self-reactive lymphocytes. Such lymphocytes can
occur because the building blocks of antibodies
(produced by B cells) are different gene segments
that are randomly composed and undergo a fur-
ther somatic hypermutation process. This pro-
cess can therefore produce lymphocytes which are
able to recognise self-antigens.

The negative selection of T cells occurs within
the thymus. The thymus forms a highly im-
permeable barrier to macromolecules called the
blood-thymic barrier. The blood-thymic barrier
allows thymocytes (immature T cells) to ma-
ture and undergo selection in an environment
protected from contact with foreign antigens.
During the selection process, antigen present-
ing cells (APCs) present self-peptide/major his-
tocompatability complex (MHC) to the T cells.
Those that react strongly (bind with high affin-
ity) with the self-peptide/MHC complexes are
eliminated through a controlled cell death (called
apoptosis). As a result, only those T cells remain
which can recognise foreign antigens and are not
self-reactive. This process has formed the foun-
dation for a large amount of AIS work, with the
seminal paper in the area being that by Forrest et
al. [12], and additional significant work has been
done recently by Esponda [13].

2.3. Immune Networks

In a landmark paper [14], Jerne proposed that
the immune system is capable of achieving im-
munological memory via the existence of a mutu-
ally reinforcing network of B cells. This network
of B cells occurs due to the ability of paratopes
(molecular portions of an antibody) located on B
cells, to match against idiotopes (other molecular
portions of an antibody) on other B cells. The
binding between idiotopes and paratopes has the
effect of stimulating the B cells. This is because
the paratopes on B cells react to the idiotopes

on similar B cells, as they would to an antigen.
However, to counter the reaction there is a certain
amount of suppression between B cells which acts
as a regulatory mechanism. This interaction of B
cells within a network was said to contribute to a
stable memory structure, and account for the re-
tainment of memory cells, even in the absence of
antigen. This theory was refined and formalised
in some successive works [15,16]. However, the
idiotypic network theory is no longer widely ac-
cepted by immunologists [17].

3. A Brief History of Artificial Immune
Systems

The origins of AIS lie in the early theoreti-
cal immunology work in [15,16] and [18]. These
works investigated the idiotypic network theory
(outlined in the previous section). The first paper
to propose a link between immunology and com-
puting was [15] which described the parallels be-
tween a network of immune cells and the Holland
classifier system [19]. One of the earliest appli-
cations of an immune inspired approach was in
[20] where a simple immune network algorithm
was applied to the cart-pole balancing problem.
This concept was developed in [21] where further
thought was given to learning and adaptation in
immune inspired artificial systems. Probably the
most influential paper in immune inspired com-
puting was [22] where a simple self/non-self dis-
crimination algorithm was proposed in the con-
text of computer security. This has been ex-
tended further in works by Forrest’s research
group [23-25] which have formed the basis of a
great deal of further research by the community
on the application of immune inspired techniques
to computer security.

Other early work in the area of AIS was under-
taken by Ishida [26]. In this work, a distributed
diagnosis systems was developed based on the in-
teractions inspired by immune networks. This
work formed a basis for subsequent work by the
same author (e.g. [27,28]) which culminated in a
book on immunity-based systems [29], focussing
on the maintainence abilties of the immune sys-
tem and its application in the development of im-
mune inspired systems.



At about the same time as Forrest was un-
dertaking her work, two researchers in the UK,
namely Hunt and Cooke, started to investigate
the nature of learning in the immune system and
how that might be used to create machine learn-
ing algorithms [30]. Initial results were very en-
couraging, and they built on their success by
applying the immune ideas to the classification
of DNA sequences as either promoter or non-
promoter classes [31] and the detection of poten-
tially fraudulent mortgage applications [32].

The work of Hunt and Cooke spawned more
work in the area of immune network based ma-
chine learning over the next few years, notably
in [33] where Hunt and Cooke’s system was to-
tally rewritten, simplified and applied to unsuper-
vised learning. Concurrently, similar work was
carried out by the authors of [34,35], who de-
veloped algorithms for use in function optimisa-
tion and data clustering. The work of Timmis
on machine learning spawned yet more work in
the unsupervised learning domain, in particular
dynamic clustering. This has met with some suc-
cess in works such as [36,37]. At the same time
work by Hart and Ross [38] used immune inspired
associative memory ideas to track moving targets
in databases. In the supervised learning domain,
very little was achieved until work in [39] (later
augmented in [40]), which developed an immune
based classifier known as AIRS. The AIRS system
evolves a population of detectors capable of iden-
tifying multiple classes, and it has been studied
quite extensively [41-43]. The system developed
by Watkins was then adapted into a parallel and
distributed learning system in [44], for increased
scalability.

In addition to the work on machine learning,
there has been increased activity in AIS over
the past ten years. Recent applications of AIS
have included the following areas: computer secu-
rity, numerical function optimisation, combinato-
rial optimisation (e.g. scheduling), learning, bio-
informatics, image processing, robotics (e.g. con-
trol and navigation), adaptive control systems,
virus detection and web mining [2]. Rather than
outlining all the developments within AIS the
reader is directed to a number of review papers
and books [45,46,1,47]. Due to a growing amount
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Figure 1. AIS Layered Framework adapted from

[1]

of work conducted on AIS, the International Con-
ference on Artificial Immune Systems (ICARIS)
conference series was started in 20022 and has
operated in subsequent years [48-53]. This is the
best source of reference material to read in order
to grasp the variety of application areas of AIS,
and also the developments in both algorithms and
the theoretical side of AIS.

4. Basics of Artificial Immune Systems

In [1] it was proposed that a framework to de-
sign a biologically inspired algorithm, and for en-
gineering an AIS in particular, should require, at
least, the following basic elements:

e A representation for the components of the
system.

e A set of mechanisms to evaluate the inter-
action of individuals with the environment
and each other. The environment is usually
simulated by a set of input stimuli, one or
more fitness function(s), or other means.

e Procedures of adaptation that govern the
dynamics of the system, i.e., how its be-
haviour varies over time.

This simple framework results in a layered ap-
proach to the development of an AIS (figure 1).
The authors of [1] argued that in order to build

2http://www.artificial-immune-systems.org
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an AIS, an application is a prerequisite. The way
in which the components of the system will be
represented should be considered on this basis,
and depends on the application: so for exam-
ple, the representation adopted for network traffic
may well be different from the representation of
a function to optimise. In AIS, the basic compo-
nents are represented in a shape space (see section
4.1). There are many kinds of shape space, such
as Hamming, real-valued and so on, each of which
carries its own bias and should be selected with
care [54].

Once the representation has been chosen, one
or more affinity measures are used to quantify the
interactions between the elements of the system.
There are many possible affinity measures (which
are partially dependent upon the representation
adopted), such as Hamming and Euclidean dis-
tance metrics. Again, each of these has its own
bias, and the affinity function must be selected
with great care, as it can affect the overall per-
formance of the system [54].

4.1. Shape Space

The notion of shape space was introduced by
Perelson and Oster [55] as a quantitative way to
describe the affinity between cells and antigens.
The basic idea behind shape space is that the de-
gree of matching between receptors on the surface
of an immune cell and the epitopes (the molecular
regions of antigens that are presented to these cell
receptors) determines the strength of their bind-
ing with one another (affinity), and this is deter-
mined by the extent to which the molecules phys-
ically fit together, which depends on their shape.
The amount of affinity in turn influences which
types of cells will have their populations stimu-
lated to expand via clonal selection, and which
ones will be suppressed.

A key fitting into a lock provides a very sim-
ple analogy for the binding of an antigen to a cell
receptor. However, this analogy is too crude, be-
cause most doors will only open if the key has
exactly the right shape, whereas an epitope can
have a less than perfect fit to a receptor and still
stimulate the corresponding immune cell, where
the amount of stimulation should depend on how
well the shapes match. To model the degree of

matching, the receptor can be represented by a
point (or more generally, a region) in a shape
space of some dimension, while an epitope is rep-
resented by a point in the same space, and the
affinity between them is measured by specifying a
measure of distance (metric) between the points.
Note that in the biological setting the dimen-
sion of shape space is not necessarily the same
as the dimension of the physical space in which
the matching occurs, but rather it is the num-
ber of different coordinates that are required to
determine the generalized shape of the objects in-
volved. (These coordinates can measure features
of the binding sites such as their width or height
above the surface, along with other parameters
like electric charge.)

As a simple example, we consider a one-
dimensional shape space. Suppose that each cell
receptor contains a groove of length ¢, and epi-
topes that bind to it have a bump of length less
than or equal to ¢ which fits into the groove, so
that the affinity is just proportional to the length
of the bump. Then we have a real shape space
where the epitopes are represented by real num-
bers = € [0,¢]. The affinity measure (distance) on
shape space is just given by the (non-negative)
value z, so that every epitope has a maximum
affinity ¢, which puts a threshold on the amount
of stimulation that the cells with this receptor can
receive.

More generally, the receptors could have var-
ious other features or different binding sites for
epitopes, so one could use n real numbers to
specify the degree of each type of binding, and
the shape space would be some subset of R™
equipped with a suitable measure of distance. For
example, for a receptor with coordinates x =
(x1,2,...,2,) and an epitope with coordinates
y = (y1,Y2,---,Yn), the standard Euclidean met-
ric would give the affinity between them as

In this way one can assign an explicit affinity to
every pair for shapes in the space [56], but there
are many other possible choices of metric. In fact,
a simpler approach (which was originally adopted



by Perelson and Oster) is to construct a “recog-
nition ball” B.(x) of radius € around the receptor
at point x, that is

Bé(x) = {y|D(Xay) <€}a

and assume that receptors have a strong enough
affinity to generate an immune response with all
epitopes lying inside their respective recognition
balls, while epitopes outside each ball generate no
response with the corresponding receptor. In that
case one can take the simplified affinity measure

y € B(x)
y & Be(x)

for each receptor at point x in shape space. In
general the size of the recognition ball (the ra-
dius €) can depend on the receptor. Moreover,
the recognition region does not need to be ex-
actly spherical, but its volume relative to that of
the entire space should provide a measure of the
probability of recognition (see Section II in [57]
for more details).

In the context of computational models of real
immune systems, as well as in artificial immune
system algorithms, it is more appropriate to con-
sider a discrete shape space rather than a con-
tinuous one. Clearly, if one represents a contin-
uous shape space on a computer, then some sort
of discrete approximation will result, but if this
is coded with a floating point representation of
the real numbers then some undesirable features
can arise: the floating point representation ampli-
fies small-scale features but gives rise to a coarse-
grained view at large scales. Despite these draw-
backs, many AIS algorithms have been coded in
terms of real shape spaces represented in floating
point e.g. [4]. However, for computational pur-
poses it seems more sensible to start from a dis-
crete model of shape space in the first place. One
common example of this is the Hamming shape
space, which we now describe.

In AIS algorithms, all artificial immune ele-
ments, like antibodies and antigens, are repre-
sented by points in a shape space. A detailed
overview is provided in [1]. The Hamming shape
space L is built out of all elements of length L
over a finite alphabet X.

D(x,y) —{ é
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Figure 2. Different Hamming Shape Spaces

In figure 2, two Hamming shape spaces for dif-
ferent alphabets and alphabet sizes are presented.
On the left hand side, a Hamming shape space
of dimension L defined over the binary alphabet
is shown. On the right hand side, a Hamming
shape space defined over an alphabet with four
symbols (the DNA bases Adenine, Cytosine, Gua-
nine, Thymine) is presented. A formal descrip-
tion of antigen-antibody interactions not only re-
quires an encoding of points, but also appropri-
ate affinity functions. Percus et. al [58] proposed
the r-contiguous matching rule for abstracting the
affinity of an antibody needed to recognise an
antigen.

Definition 1. An element e € X with
e = (e1,ea,...,er) and detector d € LI with
d = (dy,da,...,dr), match according to the r-
contiguous rule, if a position p exists where e; =
d; fori=p,....p+r—1,p<L—-—r+1.

Informally, two elements of the same length
match if at least r contiguous characters are iden-
tical.

4.2. Clonal Selection Algorithms

There are many clonal selection based algo-
rithms in the literature, most of which have been
applied to optimisation problems (e.g. CLON-
ALG [34] and opt-IA is used in [59], and the B
Cell Algorithm in [60]), and to multi-objective
optimisation (see [61,62]). From a computational
perspective, the clonal selection idea leads to al-
gorithms that iterativily improve candidate so-
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lutions to a given problem through a process of
cloning, mutation and selection (in a manner sim-
ilar to genetic algorithms [63]). In this section we
describe a clonal selection-based algorithm that
has been used as a basis for theoretical studies
[64].

4.2.1. Simple Clonal Selection Algorithm

The B Cell Algorithm (BCA) is an optimisation
algorithm that was introduced in [60]; an outline
of it is shown in Algorithm 1. Simply stated,
through a process of evaluation, cloning, muta-
tion and selection, the algorithm evolves a pop-
ulation of individuals (B cells) towards a global
optimum. Each member of this population can
be considered as an independent entity, i.e. there
are no interactions between members of the popu-
lation. Each B cell within the population is repre-
sented by an L-dimensional vector v in a binary
Hamming shape space. (In the original imple-
mentation [60], strings of 64 bits were used.) The
objective function g is evaluated on each B cell
v within the population P to produce the value
g9(v).

After evaluation by the objective function, a B
cell v is cloned to produce a clonal pool, C. It
should be noted that there exists a clonal pool C
for each B cell within the population, and also
that all the adaptation (mutation) takes place
within C'. The size of C is typically the same
size as the population P (but this does not have
to be the case).

In order to maintain diversity within the
search, one clone is selected at random and each
element in the vector is randomized. Each B cell
v/ € C is then subjected to a contiguous region
somatic hypermutation operator (CRHO). This
mutation mechanism selects a contiguous region
within the bitstring that is subject to mutation
at a uniform rate p (i.e. a number between 0
and 1 which is the probability for each bit in
the contiguous region to flip). Due to the bias
in the way that the region is formed, values of
p used in more conventional operators are much
lower than rates found to work well in the CRHO.
Details of the CRHO itself and findings about
appropriate values of mutation rate p were first
explored empirically in [60], and initial theoreti-

cal work was presented in [64]. It should also be
noted that unlike the case of genetic algorithms,
no cross-over is employed between candidate so-
lutions or their respective clone populations. For
selecting the members from C an elitist mecha-
nism is employed. The BCA typically uses a dis-
tance function as its stopping criterion. In the
case of benchmark problems, the algorithm can
be stopped when the best solution is within a
certain prescribed distance from the known op-
timum. For a general problem, one can stop the
algorithm if the value of the objective function
has not improved after a set number of iterations.

Algorithm 1: B Cell Algorithm
input : g(v) = function to be optimised
output: P = set of solutions for function
begin
1. Create an initial population P of
individuals in shape-space X%
2. For each v € P, evaluate g(v) and
create clone population C
3. Select a random member of v/ € C' and
apply the contiguous region
hypermutation operator
4. Evaluate g(v'); if g(v') > g(v) then
replace v by clone v’
5. Repeat steps 2-4 until stopping

criterion is met
end

4.3. Immune Network Algorithms

The algorithm aiNet, inspired by Jerne’s postu-
lated immune network theory, was developed by
de Castro and von Zuben [65,66] with the aim
of finding a reduced set of points that closely
represents the set of input points, or in other
words, finding a compressed input set represen-
tation with less redundancy. The process within
aiNet that evolves a population towards a set
of effective detectors is very similar in nature to
a clonal selection approach: the main difference
being that there are interactions between mem-
bers of the population via a supression mech-



anism that removes members whose match be-
tween themselves and a training data item falls
below a certain threshold. A simplified version of
aiNet can be described as follows:

Algorithm 2: Immune Network Algorithm

input : G = pattern to be recognised, N a
set of random detectors, n number
of best antibodies

output: M = set of generated detectors
capable of recognising input pattern

begin

1. Create an initial random population B

2. For each pattern to learn

2.1 Determine inverse distance for

pattern in B to each member of N

2.2 Select n members of B with the best

match to each pattern

2.3 Clone and mutate each n in

proportion to how good the match to the

pattern is

2.4 Retain the highest matching of n and

place in a set M

2.5 Perform network dynamics in M to

remove weak members of M

2.6 Generate b random elements and

place in B

3 repeat

end

4.4. Negative Selection Algorithm

The basic idea of a negative selection algorithm
is to generate a number of detectors in the com-
plementary set IV, and then apply these detectors
to classify new data as self or non-self [12]. Neg-
ative selection algorithms have been very exten-
sively used in AIS research and have undergone a
number of augmentations throughout the years.
Here we describe the negative selection algorithm
originally proposed by [12] which underpins all of
the subsequent negative selection work. This will
be further analysed in subsection 5.4. We can
summarise the algorithm in the following steps:

Given a shape-space £¥ and a self set S ¢ &
we define the non-self set N C X% to be the com-
plement N = %X\ S, so that

YYe=8UN and SNN =0.

J. Timmis A. N. W. Hone , T. Stibor and E. Clark

Algorithm 3: Negative Selection Algorithm

input :.S = set of self elements

output: D = set of generated detectors
begin

1. Define self as a set S of elements in
shape-space LL.

2. Generate a set D of detectors, such
that each fails to match any element in S.
3. Monitor data § C X by continually
matching the detectors in D against §. If
any detector match with 4, classify § as a
non-self, else as self.

end

5. Analysis of Artificial Immune Algo-
rithms

Compared with the large number of applica-
tions of AIS, very little theoretical work has been
carried out. Above we have given an example
of each of the three main types of AIS algo-
rithm, namely clonal selection algorithms, im-
mune network algorithms, and negative selection
algorithms. In this section, we review the exist-
ing theoretical analysis that has been performed
for these three different types of algorithm, and
point out where such analysis is lacking. We de-
scribe the available results of theoretical analy-
sis of the foregoing examples in some detail, and
then merely indicate how this can be extended or
generalized to other algorithms of the same type.
Often the necessary generalization has still to be
performed, so we also discuss some of the main
open problems in each area.

Within the field of AIS there has been extensive
use of clonal selection-based algorithms, which
are fundamentally stochastic in nature. There-
fore, in order to model AIS algorithms (and clonal
selection ones in particular) it makes sense to con-
sider the evolution of a population belonging to
a discrete state space and changing according to
probabilistic rules. As long as the probabilities
for transitions to a new state depend only on the
current state of the system (and not on the previ-
ous history), all the properties of a Markov chain
are satisfied, so it is natural to a describe AIS
clonal selection algorithms in these terms. Al-
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Figure 3. Principle of Negative Selection

most all immune network algorithms also include
some form of clonal selection in order to update
the population, so the techniques of Markov chain
theory are relevant in that context as well. There-
fore, in the next subsection we introduce some ba-
sic concepts and terminology for Markov chains,
which are required for what follows.

5.1. Markov chains for clonal selection

For a general clonal selection algorithm, one
has a population of N, individuals, each of which
is an element x € X%, where ¥ is some finite al-
phabet (and usually we take ¥ = {0,1}). Hence
the state of the system at any time is specified
by a point X = (x1,...,Xy,) in the state space
SIN» - This state space is finite, and so we can
assign a number to each state X by counting off
the elements of X2V». Thus we identify each state
with a number from 1 to M, where M = |X|EN»
is the number of possible states. Since the al-
gorithm is stochastic, at each time step (or gen-
eration) ¢ there is a random variable X;, taking
values from 1 to M, which corresponds to the
state of the system. The complete behaviour of
the algorithm is encoded in the infinite sequence

of random variables Xg, X1, Xo,..., and ideally
we would like to understand the probability dis-
tribution of X; and how it behaves as t — oo.

Let v; denote the M-dimensional row vector
for the probability distribution of X, so that the
Jjth component of this vector is v, ; = P(X; = j)
(i.e. the probability that the system is in state
J at time t). For a generic clonal selection algo-
rithm, the probability that the system moves to
state k at time ¢+ 1, given that it is in state j at
time ¢, does not depend on ¢. From the rules of
conditional probability, the probability distribu-
tion at time ¢ 4 1 is given in terms of that at the
preceding time ¢ as follows:

M

P(Xpp1 =k) = P(Xpp1 = k|X; = j) P(X; = j);
j=1

or more concisely this is

M
Verik = Y v Pik, (5.1)

j=1

where Pj, = P(X;41 = k|X; = j) is the prob-
ability of transition from state j to k, and since
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this is independent of ¢ we have also
Pj, = P(X1 = k| Xo = j).

The above properties mean that the sequence of
variables X; form a Markov chain, and because
of the t-independence of Py it is called a homo-
geneous chain.

The equation (5.1) can be summarized even
more neatly in matrix form, as

Vi+1 = V¢ :P7 (52)

where P = (Pj) is the transition matrix, that is
the M x M matrix of transition probabilities. It
follows immediately from (5.2) that

vi = vo P!, (5.3)

so that the asymptotic distribution of the chain
depends on the limiting behaviour of P* as t —
00. A single state j of the chain is said to be
absorbing if P;;, = 0 for all k # j: in other words,
once the system reaches that state, it will never
leave. A Markov chain is said to be absorbing if it
has at least one absorbing state, and from every
state it is possible to reach an absorbing state.

In order to understand the convergence proof in
the next subsection, it is also helpful to introduce
one more definition. A state j of the chain is
called persistent if

P(X;=jforsomet>1|Xg=3)=1, (5.4)

and otherwise it is called transient. More in-
tuitively, if the system starts off in a persistent
state, then it must return there (with probability
1), while if the state is transient then the system
need not return to it. For more details on the
theory of Markov chains, the reader is referred to
chapter 6 of [67].

5.2. Analysis of Clonal Selection: the B
Cell Algorithm
Clonal selection algorithms are usually applied
to function optimization and search problems. In
particular, the B Cell algorithm, as described in
subsection 4.2.1, provides one example of an im-
mune algorithm used for optimization, while the
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more general problem of multiobjective optimiza-
tion has been tackled with MISA [62], a multiob-
jective artificial immune system algorithm. For
problems of this kind, one of the first questions
of interest is whether the algorithm is convergent,
in the sense that it finds (at least one) global op-
timum solution with probability one, in the limit
as t — oo. The first paper to address this prob-
lem was [68], which used Markov chain theory
to prove convergence of MISA, with the proviso
that an elitist memory set must be maintained.
In [64], after modelling the associated hypermu-
tation operator, the same method of proof was
adapted and simplified in order to prove conver-
gence for the case of the B cell algorithm, which
we describe shortly.

Before proceeding to give specific details for the
B cell algorithm, it is worth remarking on the
similarities between clonal selection-based AIS
algorithms and genetic algorithms (GAs). The
paper [64] adopts a novel method for the con-
struction of the transition matrix which allows a
more transparent analysis of how the features of
the Markov chain relate to the operators in the al-
gorithm. Evolutionary algorithms have been ex-
tensively modelled with Markov chains for some
time. For instance, Nix and Vose presented an
exact Markov chain model of a simple genetic al-
gorithm [69], which was then analyzed in depth in
several papers by Vose; these results are summa-
rized in [70]. The model of Nix and Vose does
not show the simple GA to be convergent, al-
though it is clear from other results (such as those
in [68]) that it could be shown to be convergent
with the additional condition that an elitist mem-
ory set should be maintained. In fact, more re-
cent results on applying Markov chains to conver-
gence of GAs, as presented by Rudolph [71], give
quite general sufficient conditions for their con-
vergence. This means that in many cases one can
merely check that these conditions are satisfied,
and there is no need to do any detailed modelling
unless the conditions do not hold. In that sense,
there is already a general framework for under-
standing the convergence of GAs.

In a similar vein, the paper [68] calls for a
general mathematical framework that would al-
low an entire family of artificial immune algo-



Theoretical Advances in AIS

rithms to be shown to be convergent instead of
a specific proof for each algorithm. It seems that
such a framework has just appeared. Very re-
cently, the authors heard the results of [72], which
adapt the criteria of Rudolph to the setting of
a generic clonal selection-type algorithm, called
the Immune Algorithm (TA). This IA includes the
possibility of a variety of different schemes for
hypermutation, aging and so on, and two suffi-
cient conditions for convergence are given in [72].
In particular, it appears that the convergence of
the B Cell Algorithm can also be proved by mi-
nor modifications of the approach in that paper.
However, here we shall just review the approach
originally taken in [64], before suggesting some
possible extensions of this work.

One of the most interesting features of the
B Cell Algorithm (BCA) is the contiguous re-
gion hypermutation operator, for which a for-
mal model was presented in [64], as a prelude to
the proof of convergence. From the structure of
the mutation operator, one can understand the
salient features of the transition matrix P asso-
ciated with the algorithm. As previously men-
tioned in subsection 4.2.1, the BCA maintains
two populations of candidate solutions: the mem-
ory set and the clonal pool. In the case where the
clonal pool C has only one member, it is possi-
ble to obtain formulae for the probabilities of all
possible mutation masks. (Although it is more
complicated, this can be extended to the case of
a clonal pool of arbitrary size.) These probabil-
ities are deduced by counting all possible ways
each mutation mask can occur, for an exhaustive
set of mutation masks. Letting fr be the proba-
bility of transition from zero to some number T
(the T'th state of a string of length L), we have

a L-1
1 m+1l-n—
fr= g [0SRt
n=1m=b
S a1 — p)tn Rk (5.5)

n=1

where a is the bit position of the first flipped bit,
b is the bit position of the last flipped bit (both
measured starting from the most significant bit)
k is the total number of bits that must be flipped

11

to mutate from 0 to 7', and p is the probability of
a bit being mutated given it is in the contiguous
region. In this setting we have 0 < T < 2L — 1,
a<b<Land0<p<I1.

0.15

0.05
Om wla | el L 1 s L

0 50 100 150 200 250 300
Number to be mutated to from 0

Probability

Figure 4. Theoretically determined probabil-
ities of generating mutation masks from the
CRHO: String Length L=8, Probability of mu-
tation p = 0.5. Taken from [64].

Probability

' 1 1
0 50 100 150 200 250 300
Number to be mutated to from 0

Figure 5. Probabilities determined experimen-
tally by averaging one million results from the
implemented CRHO: String Length L=8, Prob-
ability of mutation p = 0.5. Taken from [64].

Equation (5.5) can be used to generate the
probabilities of all non-zero mutation masks, and
this formula is general (for a clonal pool of one),
and can also be applied to Gray code or any other
binary system. The probability of a mutation
mask is given as a polynomial in p. The contigu-
ous region hypermutation operator was also im-
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plemented for some particular numerical values,
and the theoretical results were found to match
almost perfectly with experiment (see figures 4
and 5 respectively, reproduced from [64]).

The proof of convergence in [64] is based on the
fact that the BCA corresponds to an absorbing
Markov chain (see subsection 5.1) with a non-zero
one step transition probability from all points in
the space to any of the global optima. This is due
to the elitist mechanism in the BCA. This mecha-
nism essentially ensures that the Markov chain is
reducible, as opposed to an irreducible chain as is
often see with genetic algorithms [69]. In the ter-
minology of Markov chains, all non-optimal states
of the BCA are transient. Moreover, all the op-
tima are absorbing states.

Proposition 1. All non-optimal states are tran-
sient for 0 < p < 1.

Proof. Under the condition 0 < p < 1, the
sample matrix contains only non-zero elements.
By inspection of equation (5.5) it is clear that if
fr>0if (1 —p) >0 and p > 0. Thus, we im-
pose the condition 0 < p < 1. (The formulae
in equation 5.5 need to be modified in the case
when the clonal pool C has more than one mem-
ber but the condition for p is the same.) Hence it
is possible to reach the absorbing state in one step
from any initial state, and this is irrespective of
the details of the objective function. Hence, for a
non-optimal state j the probability of remaining
in that state for one time step is p = Pj; < 1.
Once a state has been left for a state of higher
affinity, it can never return to a previously oc-
cupied state, due to the possible transit matrix
forbidding transitions to states of equal or lower
affinity. Hence it follows that if Pj;(n) is the j, k
entry of P”, then

o0 oo N 1
D Pn) =) p" =1 <o (56)
n=0 n=0 p

hence the state j is transient (see p.122 in [67],
for instance). O

The general theory of Markov chains is partic-
ularly effective in the case of irreducible chains.
The chain corresponding to the BCA is reducible,
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however: by the Decomposition Theorem [67] it
can be partitioned into the set of transient non-
optimal states together with the (disjoint) closed
sets of absorbing states corresponding to the op-
tima. Adopting the terminology of [73]|, we can
say that the non-optimal states of the BCA are
inessential, in the sense that for all such non-
optimal states j there exists another state k£ such
that j can make a transition to k but not vice-
versa: it is sufficient to choose any state k with
a larger value of the objective function. Then if
there are K optima we can partition the transi-
tion matrix P as follows:

110
P= : (5.7)
R|Q

where 1 denotes the K x K identity matrix, Q cor-
responds to the transitions between the inessen-
tial states and corresponds to transitions from
inessential to optimal states. It follows from stan-
dard properties of stochastic matrices that the
powers Q! — 0 as t — oo. Using this partition-
ing, we find the following result.

Proposition 2. All optima are absorbing states.

Proof. By definition, the possible transit matrix
prohibits transition from a global optimum to any
other state, even another global optima. There-
fore once the algorithm enters a global optimum
it satisfies the condition for persistence. Clearly
for an optimum state j we have p = Pj; = 1
(i.e. once an optimum is reached then one re-
mains there with probability one), so the corre-
sponding sum as in equation (5.6) diverges and
the optima are all persistent states. They are
also absorbing, since they do not communicate
with any other state. [l

Theorem 1. The BCA converges to the optima
of the objective function, for 0 < p < 1, where p
(the mutation rate) is the probability of mutation
for bits contained within the contiguous region.

Proof. We have the state vector calculated from
powers of the transition matrix according to (5.3).
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Now

for some matrix R; constructed from sums of
powers of Q acting on R.. It follows from standard
properties of stochastic matrices that the powers
Q! — 0 as t — oo, the powers of P take the form

P> = (5.9)

Acting with this matrix on the initial state vector
v we see that the probability of being in any of
the non-optimal transient states tends to zero as
t — 00, and hence the probability of ending up in
an optimum tends to one, as required. O

We have given a fair amount of details about
the structure of the Markov chain associated with
the BCA. According to the recent results in [72],
some of these details can be bypassed if one only
wishes to know whether an algorithm of this kind
converges or not. However, convergence only de-
scribes the limiting distribution as ¢t — oco. A
more useful sort of result, for practical applica-
tions of clonal selection algorithms, would be to
know an upper bound for the number of itera-
tions, tqs say, for which the algorithm converges
with some certainty (say, 90 per cent confidence).
The authors of [72] give some preliminary esti-
mates of such bounds for the generic IA. Yet as
they point out, without any more specific infor-
mation on the details of the algorithm or the type
of objective function, such estimates are too crude
to be of practical use. Thus a major theoretical
challenge for the future is to give sharper bounds
for the performance of an IA (or of other clonal
selection mechanisms) when applied to some spe-
cific functions, and to see how this depends on
the form of the mutation operator and other fea-
tures of the algorithm. Ideally, one would like to
have an idea of which type of IA would be most
effective for a particular class of problems.

13

5.3. Theoretical Issues for Immune Net-
work Algorithms

A lot of the original inspiration for AIS algo-
rithms came from earlier models in theoretical
immunology (see [15]), which were usually formu-
lated in terms of nonlinear differential equations
for networks of cell and antigen populations, or in
terms of automata or difference equations. The
extensive review [57] presents the state of the art
in such models a decade ago. There is a great
deal of dynamical systems theory that describes
the behaviour of fixed networks, e.g. cell net-
works modelled by systems of differential equa-
tions. However, for AIS network algorithms so
far only empirical analysis has been performed
[3-6], due to the changing nature of the networks
appearing therein. In this subsection we merely
highlight some of the challenges posed by immune
network algorithms from a theoretical point of
view.

The theory of dynamical systems contains a
wide variety of tools for analysing nonlinear mod-
els (see [74-76] for instance). The natural ques-
tion as to whether the same tools could be ap-
plied to AIS algorithms, which are inspired by
nonlinear models of biology, was raised in [77].
However, while the concept of a phase space (or
state space) is natural for modelling both bio-
logical and artificial immune systems, there are
some fundamental differences between the two.
The first thing to observe is that the number of
immune cells in the human body is absolutely
vast (of the order of 10'? lymphocytes accord-
ing to current estimates), which makes it sensible
to use continuous models of lymphocyte popu-
lations (i.e. differential equations), whereas the
number of “cells” making up the clone popula-
tion in existing AIS algorithms is usually in the
tens or hundreds at most. Thus the effects of
the discreteness of the population play an impor-
tant role in AIS. Another essential observation
is that most (continuous or discrete) dynamical
models in immunology, such as those reviewed by
Perelson and Weisbuch [57], are completely de-
terministic, while within AIS there has been ex-
tensive use of clonal selection-based algorithins,
which are fundamentally stochastic in nature.

Immune network algorithms have two main
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parts: a system of differential equations or differ-
ence equations, which describe the interactions
in the network and how they evolve with time;
and a set of rules for modifying or updating not
only the interaction strengths, but also the num-
ber of different populations or agents in the net-
work (cf. algorithm 2 in subsection 4.3). The dif-
ferential or difference equations constitute a dy-
namical system in the standard sense, in a phase
space of finitely many dimensions (or degrees of
freedom), and these can be analyzed by stan-
dard techniques e.g. stability analysis in phase
space, Lyapunov functions, and so on. How-
ever, it was already pointed out by the authors
of [15] that there is not yet any good theory to
describe features like steady states and their sta-
bility in the case where the size of the network
can change with time. In addition, the changes
are usually stochastic, according to clonal selec-
tion rules. (However, some network algorithms,
such as those considered by Tarakanov [78,79],
have a phase space that changes deterministi-
cally.) One could also imagine that if the pop-
ulations change very rapidly, then the network
behaves much more like a (continuous) Markov
process than a deterministic one, even for short
times. Therefore, while it may be possible to get
some idea of the behaviour of an immune network
over short timescales (where the size of the net-
work remains constant), over long times there is
currently no basic theory to predict the behaviour
of such a system. This represents a major chal-
lenge for dynamical modelling of AIS network al-
gorithms.

5.4. Theoretical Issues for the Negative Se-
lection Algorithm

The negative selection algorithm (see subsec-
tion 4.4) is one of the most frequently applied
algorithm for anomaly detection problems [2].
However, for real-world problems it turned out
that finding efficiently 7-contiguous detectors
seems to be computationally infeasible if the
matching length r is large (e.g. r > 32). In this
section, we present an analysis of generating de-
tectors randomly and then the subsequent (and
surprising link) to a special type of the k-CNF
satisfiability problem. We will show that finding
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detectors is equivalent of finding assignment sets
for k-CNF instances (which is NP-complete for
k> 2).

5.4.1. Probability of Detection for Ran-
dom Detector Generation

To approximate the probability that a ran-
domly drawn detector from shape space {0,1}F
recognizes (when using the r-contiguous match-
ing rule) a randomly drawn antigen, one can ap-
ply results from probability theory, namely recur-
rent events and renewal theory [80]. In Feller’s
textbook [80] on probability theory an equivalent
problem? is formulated as follows:

“A sequence of n letters S and F
contains as many S-runs of length r
as there are non-overlapping uninter-
rupted blocks containing exactly r let-
ters S each.”

Given a Bernoulli trial with outcomes S (success)
and F (failure), the probability of no success run-
ning of length r in L trials is according to Feller

1—px 1
. 5.10
(r+1—rx)q abtl ( )
where
1 T 7\2
p=q=75 and @=1l+gp"+(r+1)(@") +...

as term (5.10) gives the probability of no success
run of length r in L trials, the correct approx-
imation that a random detector recognizes with
r-contiguous matching rule a random antigen re-
sults in

1—px 1
(r+1—ra)q aftl

PWF_1—< >(au)
According to results provided in [12], one can
calculate the number of r-contiguous detectors
which are required to detect non-self bit-strings

3The Link between recurrent events, renewal theory and
the r-contiguous matching rule was discovered originally
by Percus et al. [58] and rediscovered by Ranang [81]. Per-
cus et al. presented in [58] an approximation which is
only valid for » > L/2, but mentioned the full approxi-
mation for 1 < r < L indirectly by mentioning the name
de Moivre and citing Uspensky’s textbook (see pp. 77
in [82]).
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by allowing with probability Pf. that the ran-
domly generated detectors will not match.

Let {0,1}Y be a Hamming shape-space,
{Dy, D, S} C {0,1}F and

|Dg| = number of initial detectors
(before negative selection)
|D| = number of detectors
(after negative selection)
S| = number of self elements in S

Py probability according to (5.11)

P_s = probability of a random element from

{0, 1}* not matching any element from S

(1 _PWF)‘S‘ ~ €7PWF.|S|

Proi = probability that |D| detectors fail to
detect a non-self bit-string
= (1 _ PWF)‘D‘ ~ e*PWF'|D|

Given a pre-defined number of randomly drawn
initial detectors |Dyp|, |S| and Py g, one obtains
the number of suitable detectors | D| not matching
any element in S as follows:

D] = [Dol- Pus. (5.12)

The number of detectors |D| that fails to detect
a non-self bit-string with probability Prq is

1 P'ai
|D| = _M. (5.13)
Pwr

Combining (5.12) and (5.13)

— ln(me‘l)
D = ——F= .14
Dol Pyp - P.s (5:14)

one obtains the number of initial detectors |Dy|.
That means, for detecting a non-self bit-string by
allowing with probability Py that |D| detectors
fail to detect a non-self bit-string, one requires a
size of |Dy| initial detectors.
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Figure 6. Coherence between the number of self
elements |S| and the number of initial detectors
|Do| according to (5.14) for L = 49,r = 12 and
Proi1 = 0.1. The values are chosen as proposed
in [25].

By transforming (5.14) into (efwr Sl
(—In(Pyfair)/Pwr)) it appears that (5.14) grows
exponentially in |S| (see also Fig. 6), i.e. this
random search approach becomes infeasible for
large |S|.

5.4.2. The Link between r-contiguous De-
tectors and k-CNF Satisfiability

We have seen in the previous section 5.4.1 that
the random search for detectors is not a feasible
approach for fixed L,r and growing |S|. In this
section we show how r-contiguous detectors are
related to the k-CNF satisfiability problem.

The Boolean satisfiability problem is a deci-
sion problem and can be formulated in terms of
the language SAT [83]. An instance of SAT is
a Boolean formula ¢ composed of A (AND), Vv
(OR), ~ (NOT), — (implications), < (if and only
if), variables x1, xo, ..., and parentheses. In SAT
problems, one has to decide if there is some as-
signment of true and false values to the variables
that will make the Boolean formula ¢ true. In
the following sections, we will focus on Boolean
formulas in conjunctive normal form.

A Boolean formula is in conjunctive normal
form (CNF), if it is expressed as an AND-
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combination of clauses and each clause is ex-
pressed as an OR-combination of one or more
literals. A literal is an occurrence of a Boolean
variable x or its negation .

A Boolean formula is in k-CNF, if each clause
has exactly k distinct literals. A k-CNF Boolean
formula is satisfiable if there exists a set of values
(0 = false and 1 = true) for the literals that causes
it to evaluate to 1, i.e. the logical value true.

We will now consider a special subset of
Boolean formulas in k-CNF which are defined as
follows:

Definition 2. A k-CNF Boolean formula ¢pcp is
in L-k-CNF, when ¢ has (L — k + 1) clauses
C1,Coy...,Cr_k41 for 1 <k < L and k—1 equal
literals in C;,Ciyq fori=1,2,...,L—k

C, = (IEl Vxg V ... V :Z?k)
Cy = (IEQ Vzz V...V Ik+1)
Cr_p+1 = ($L—k+1 V k42 V ...V CEL).

Recall r-contiguous detectors are bit-strings
from {0, 1}* which do not match any bit-strings
of length L from S with the r-contiguous match-
ing rule. We subsequently show a transforma-
tion of arbitrary bit-strings from S into L-k-CNF
Boolean formulas.

Let b € {0,1} and £(b) a mapping defined as:

z if b=0
£e) — {E otherwise

where x, 7 are literals.

Let k, L € N, where k < L and s € {0,1}*, where
s[i] denotes the bit at position 4 of bit-string s,
and C(s, k) a L-k-CNF mapping defined as:
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For the sake of clarity we denote a Boolean for-
mula in L-k-CNF which is obtained by C(s,k)
for s € S as ¢qc- Moreover we denote a
Boolean formula /\Lill ¢!, which is obtained
by C(s1,k) A C(s2,k) A N C(s|s), k) for
S| >1andalls; €S, i=1,...,|9] as ¢rep. If

|S| = 17 then ¢ch = ¢ch-

Proposition 3. Given a shape-space {0,1}%,
a set S C {0,1}F and the set D C {0,1}%
which contains all generable r-contiguous detec-
tors, which do not match any bit-string from S.
The Boolean formula ¢.., which is obtained by
C(s,r) for all s € S is satisfiable only with the
assignment set D.

Proof. Transforming s; € S with C(s1,k) in a
L-k-CNF, where k := r, results due to £(-) in
a Boolean formula which is only satisfiable with
bit-strings from

{0,1}1\ Fy, where the symbol  represents either
alor0and

F = 1,... Kk L.k
1 {51[ ’ 7T] < %
l—r
$1[2, .oy 1] xox Lk,
l—r—1
sill —r+1,...,1]}

l—r
Transforming the remaining s; = s2,53,..., ||
with C(s;,k) and constructing ¢pe, = ¢, A

2, A ... A ¢ results in a Boolean for-

mula which is only satisfiable with bit-strings
from {0,1}*\ (F4 U F, U... U Fjg)). Bach r-
contiguous detector from D has no matching
bits at s;[1,...,7],8:[2,..., 7+ 1],...,s;[L—71+
1,...,L] for i = 1,2,...,|S|. Hence, amb is only
satisfiable with assignment set {0, 1}*\ (FyUF,U
...UFg)=D. O

5.4.3. Unsatisfiable CNF Formula and No
Generable Detectors

In this section, we use our obtained transfor-

mation result (proposition 3) to demonstrate in-
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volving properties on the number of generable -
contiguous detectors. An example is the question:
Given S and r, is it possible to generate any detec-
tors at all? By obtaining with C(s,r) a Boolean
formula, (Emb in CNF, this question can be an-
swered by means of the resolution method [84,85].
The resolution is a method for demonstrating
that a CNF formula is unsatisfiable, i.e. a de-
duction to the empty clause (symbol O), or in our
case that no detectors can be generated. Roughly
speaking, it is based on the idea of successively
adding resolvents to the formula. Resolvents are
clauses which do not modify the (growing) for-
mula.

Specifically, let C; and C; be clauses and let =
be a literal which occurs in C; and also occurs in
Cjasz,ie z€C;and 7 € C;. The resolvent of
C; and Cj is C} U O, where C} := C; \ {z} and
C% = Cj \ {7}. For example, (v1 V z3) is the
resolvent of (x; V x2) and (1 V T2 V x3).

Example 1. Let S contain the following bit-
strings {110,000,010,001} and let = 2. The

obtained Boolean formula ¢, results in

brev = (T1 V Ta) A (Ta V 3) A
(1 V x2) A (22 V 23) A
(x1 V T2) A (T2 V x3) A
(x1 V x2) A (z2 V T3)

By applying the resolution method (see Fig. 7),
one can see that (Emb is reduced to the empty
clause O, i.e. ¢.qp is not satisfiable and therefore
no detectors are generable.
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Figure 7. Resolution method results in the empty
clause [0 and implies that ¢, is not satisfiable

However, we would like to emphasize here that
the resolution method for determining if detec-
tors are generable is interesting mainly from the
theoretical point of view. Unfortunately, it takes
an exponential number of resolution steps until
an empty clause is obtained. Information on the
complexity of the resolution method is provided
in [85].

Another approach to answer the question: Is
it possible to generate any detectors at all? is to
apply a variant of the Lovasz Local Lemma [85].
More specifically we define according to [85],
vbl(C) as the set of variables that occur in clause
C,ie. {x € Vlz e CorTe C}, where V is
a set of Boolean variables. Moreover, as defined
in [85], the neighborhood of C' in ¢, is the set of
clauses distinct from C in ¢,..; that depend on C,
or more formally:

Ly,.,(C):= {C" € ¢rep|C" # Cand
vbl(C) Nwdbl(C”) # 0}

Proposition 4. Let S be a set of bit-strings
of length L, where all s € S are consisting of

pairwise distinct substrings s[1,...,r],s[2,...,r+
1,...,s[L—r+1,...,L]. R-contiguous detectors
are generable, if
2" e 1 4+1
S| < —
151 2r — 1

Proof. For each s € S construct a Boolean for-
mula ¢!, in L-k-CNF by C(s,r). Construct a
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related k-CNF Boolean formula ¢ = oL, A

20 A ... A ¢l Let C be the i-th
clause in ¢/, 1 < j < |S]. C/ has at most

2 (r — 1) many neighborhood clauses in ¢’ , and
at most (2(r — 1)+ 1) (|S] — 1) many neighbor-
hood clauses in all remaining Boolean formulas
Oy s 7L 8] In total this
results in |S]- (2r — 1) — 1 dependent clauses (see
Fig. 8).

A variant of the Lovész Local Lemma [85] im-
plies that if [ »(C)| < 282, k € N for all clauses
C in a k-CNF formula F, then F is satisfiable.
Applying the variant of the Lovész Local Lemma
results in

IS|-(2r—1)—1<2""2 <2 /e

5.4.4. Complexity of L-k-CNF

There seems to be strong evidence that find-
ing all r-contiguous detectors requires at least
Q(2%) bit string evaluations. This conclusion is
justified by the fact that ©(2%) evaluations are
required for finding all satisfying sets for the first
clause of each s € S. Additionally, the remain-
ing (I — r) clauses of each s € S must be ver-
ified, which in total could be done in at most
O(|S] - 2%) evaluations. Moreover as outlined in
section 5.4.2, the k-CNF satisfiability problem is
a decision problem, where the input is a boolean
formula f and the output is “Yes”, if f is satisfi-
able, and “No”, otherwise. The currently fastest
known deterministic algorithm that decides the 3-
CNF problem, runs in time O(1.473™) |86], where
n is the number of variables. The probabilistic
algorithm variant runs in time ((1.3302™) [87].
For k = 4,5,6 the deterministic and probabilistic
algorithms runtimes become slightly worse [88].

We would like to emphasize here that the (de-
terministic and probabilistic) k-CNF algorithms
proposed in [88,87] decide if a boolean formula is
satisfiable. However, the algorithms do not out-
put all satisfiable assignment sets — in our case,
all generable detectors.

J. Timmis A. N. W. Hone , T. Stibor and E. Clark

6. Conclusions

We have reviewed the recent theoretical ad-
vances in artificial immune systems (AIS). Up un-
til now, AIS algorithms have mainly been devel-
oped in an ad hoc manner, with particular ap-
plications in mind. This has meant that theo-
retical justification for the use of AIS has mostly
been lacking. The theoretical work done so far
merely constitutes the first steps towards devel-
oping a more rigorous underpinning to the area,
and there clearly remains a great deal more work
to be done. For several reasons, existing theoreti-
cal studies of AIS have predominately focussed on
clonal selection and negative selection algorithms.
For clonal selection-type algorithms, the compar-
ison with genetic algorithms and other evolution-
ary computational approaches cannot be ignored.
There are now many significant theoretical re-
sults on evolutionary algorithms (both in terms
of schema [89], and using the theory of Markov
chains [71]). A natural application of these results
would be to immune algorithms of an evolution-
ary nature, since the latter have many similari-
ties with genetic algorithms, for instance. Also,
since the most prolific use of AIS algorithms has
involved the clonal selection and negative selec-
tion approaches, the theoretical advances in those
types of algorithms (such as those reviewed here)
are likely to be of most use to the community.

We have seen that whilst convergence proofs
were initially only available for specific algo-
rithms, such as MISA [68], and the B cell algo-
rithm [64], there is now a suitable framework for
understanding the convergence of generic clonal
selection algorithms [72]. Due to the fact that
clonal selection is applied to cell populations in
immune networks, some of this convergence the-
ory will also be relevant to immune network al-
gorithms. However, we have hinted that a full
theory of the latter would require a proper un-
derstanding of the interplay between the nonlin-
ear dynamics of the network and the stochastic
nature of the clonal selection mechanism, which
is currently lacking.

For theory to be of use to the wider community,
it must be seen to give some insight into the pos-
sible application (or otherwise) of an approach.
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Figure 8. Cij has at most 2 (r — 1) many neighborhood clauses in gbf;cb (r —1 to left and » — 1 to right)
and at most (2(r — 1) + 1) - (S| — 1) many neighborhood clauses in all remaining Boolean formulas
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The work reviewed here on negative selection has
been in this vein, with clear theoretical results
showing that there are limitations with the cur-
rent approaches being employed, and that the ap-
plicability of negative selection algorithms in cer-
tain areas may not be as appropriate as was first
assumed. As we have seen, the problem of gener-
ating detectors in a negative selection algorithm
turns out to be equivalent to an N’P-complete
problem. More generally, when applying AIS al-
gorithms to complex problems, the issue of scala-
bility is a serious one. In [90] an optimal control-
based approach is suggested for dealing with the
allocation of resources when applying an AIS to
solve a complex, dynamic problem.

It has been noted by some that the field of AIS
has somewhat drifted away from its immunologi-
cal roots [91,92,92]. In this paper we have made a
brief attempt to explain the immunology behind
the algorithms, but the observant reader should
notice that the algorithms developed are poor
cousins of the immune system mechanisms from
which they are derived. However, in the past few
years, work by the Danger Team? has started to
address this imbalance. For example, recent work

4http://www.dangertheory.com

by [93] has begun explorations into the use of den-
dritic cells (which are a type of cell found in the
innate immune system), as a mechanism for iden-
tifying dangerous (or anomalous) events in a data
stream. Whilst that work is still preliminary and
works only on static data at the moment, it may
go some way towards making a real breakthrough
in the intrusion detection area of AIS research.
Similarly, preliminary work in [94] proposes an
artificial tissue, which is a type of representation
of the data space that can evolve and adapt over
time, providing a useful bridge between the data
and the immune algorithm itself.

To try to create a greater synergy between im-
munology and computer science, the authors of
[91] propose a conceptual framework that allows
for the development of AIS algorithms that are
more grounded in biology, through the adoption
of a fully interdisciplinary approach. The bio-
logical metaphors employed in AIS research thus
far have typically been simple, but somewhat ef-
fective. However, as proposed in [91], through
greater interaction between computer scientists,
engineers, biologists and mathematicians, better
insights into the workings of the immune system
and the applicability of the AIS paradigm will
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be gained. The development of AIS techniques
should be rooted in a sound methodology in or-
der to fully exploit the paradigm: for instance,
modelling techniques such as cellular automata
[95] and process calculi such as m-calculus [96],
and stochastic m-calculus [97] could be employed.
Thus, in order to develop an AIS algorithm ap-
propriately, it is first necessary to develop math-
ematical and/or computational models of the im-
mune system, focussing on the biological aspects
of interest. Apart from the computational appli-
cations, there is great potential for AIS to make
a contribution to immunology through this pro-
cess. Of course, modelling immune systems is
nothing new, and the field of AIS itself arose from
this area to some extent. Yet there is the poten-
tial for novel results to emerge in at least two
ways: first, algorithms that have been developed
through this process should better exploit the un-
derlying biological principles on which they have
been based, and second, computer scientists can
pose apparently naive questions about immunol-
ogy that cause immunologists to think in quite a
different way, yielding new biological insights. In
future, the adoption of a ‘theory first’ approach,
starting with detailed theoretical models of the
biology, will provide a sound basis for the algo-
rithms developed.
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