Natural Computing manuscript No.
(will be inserted by the editor)

Foundations of r-contiguous Matching in Negative
Selection for Anomaly Detection

Thomas Stibor

Received: date / Accepted: date

Abstract Negative selection and the associated r-contiguous matching rule is a popu-
lar immune-inspired method for anomaly detection problems. In recent years, however,
problems such as scalability and high false positive rate have been empirically no-
ticed. In this article, negative selection and the associated r-contiguous matching rule
are investigated from a pattern classification perspective. This includes insights in the
generalization capability of negative selection and the computational complexity of
finding r-contiguous detectors.

Keywords Artificial Immune Systems - Negative Selection - Anomaly Detection -
k-CNF Satisfiability

1 Introduction

Theoretical immunologists proposed the r-contiguous matching rule to quantify the
binding strength between antibodies and antigens in immune system models [27]. In
these models, two strings of the same length have an r-contiguous match, if at least
r contiguous characters in both strings are identical. In the field of artificial immune
systems, the r-contiguous matching rule is frequently applied as a matching rule for
change detection [13] or more generally, for anomaly detection problems [10]. In these
problem domains, antibodies (called detectors) and antigens (samples to classify) are
abstracted as bit strings and the r-contiguous matching rule is applied as a closeness
measure to detect anomalous antigens. To be more precise, the detectors are generated
in a censoring process called negative selection, such that no detector matches with
any normal bit string [17]. The generated detectors are then applied as detection units
(similar to antibodies in the immune system) to classify bit strings. A bit string b is
classified as anomalous if an r-contiguous match between detector and b occurs, and
otherwise as normal.

Thomas Stibor

Technische Universitdt Darmstadt
Fachbereich Informatik

Hochschulstr. 10, Darmstadt, 64289, Germany
E-mail: stibor@sec.informatik.tu-darmstadt.de

In recent years, attempts were made [13,42,41,2] to generate detectors efficiently,
i.e. in polynomial time and with polynomial space occupation with regard to the detec-
tor matching length 7 and number of normal bit strings |S|. All proposed algorithms
for generating detectors either have a time or a space complexity which is exponential
in the matching length 7, i.e. O(2") or in the number of normal bit strings |S]|, i.e.
O(elSh.

Nevertheless the negative selection method was applied on detection problems,
such as tool breakage and fault detection [8,38], novelty detection in time series [9] and
(network) intrusion detection [24,32,3,21].

Esponda et al. and Wierzchoii investigated the coverage properties of the r-contiguous
matching rule [14,41,42]. Empirical studies of the coverage properties are investigated
in [22]. However, until now there has been limited available theoretical work on negative
selection from the perspective of a pure pattern classification problem and computa-
tional complexity of finding r-contiguous detectors.

In this article, negative selection and the associated r-contiguous matching rule are
investigated from a pattern classification perspective. This includes insights in the gen-
eralization capability of negative selection and the computational complexity of finding
r-contiguous detectors. The article is organized as follows: in section 2 the anomaly
detection problem is motivated and in section 3 the immunological principle of nega-
tive selection is briefly explained. In sections 3.1 - 3.5 the negative selection algorithm
for anomaly detection is presented and generalization capabilities are discussed. Ex-
periments on the generalization capabilities are presented in section 4. Based on the
matching probability of two randomly drawn bit strings, a random search approach
to generate detectors and the resulting implications are shown in sections 5 - 5.4. The
problem equivalence of generating r-contiguous detectors and satisfying Boolean for-
mulas in conjunctive normal form is presented in section 6. In sections 6.2, 6.1 6.2, 6.3
and 7 the problem equivalence is used to explore the computational complexity and
the feasibility of generating detectors.

2 Anomaly Detection

Anomaly detection, also referred to as one-class learning or novelty detection is an
in-balanced two-class pattern classification problem. That is, training data consists
either of examples from a single class Cy of normal examples, or Cy and a strongly
under-represented second class C7 which contains anomalous examples (see Fig. 1).
The test data contains (unseen) samples from both classes. In a probabilistic sense,
anomaly detection is equivalent to deciding whether an unknown test sample is pro-
duced by the underlying probability distribution that corresponds to the training set
of normal examples. This is based on the assumption that the anomalous data is not
generated by the source of normal data (see Fig. 2). Popular statistical methods for
anomaly detection are for instance non-parametric density estimation techniques [4,
36]. The underlying density is approximated with a Parzen window estimator and a
test sample is classified as anomalous if the density of the test sample lies below a pre-
defined threshold. Instead of approximating the full density, one can detect anomalies
by assuming that anomalies are not concentrated. This leads to the problem of finding
regions where most of the normal data is concentrated [33]. Within the framework of
Support Vector Machines, this problem can be formulated in terms of finding in high
dimensional feature space the minimum enclosing hypersphere which captures most of

? °
@ ggo o o
0™ 38% o %o’ & o o oog o .
o
e 90 o 080 %0 o, 0 ®o o0
° o o 00
o & ° §d 00 o, g °
°e o N o %0 LI
o ° 09 0 o0 o
°) 4 o ©° oo o QL % §° °©
2 o a o A o 0% 2% B o
° ® 3 o 000
° o o s o
8go 20
o, N o & ° 00
o
ER ® ° °
o °
°
N N 13
N N .

Fig. 1 A “typical” anomaly detection problem with two given classes (Co = circles and C
= triangles). The number of anomalous examples is strongly under-represented (20 examples
with class label C1) compared to 200 examples of normal data (class label Cp).

30

25

20

15

10

05

00
I

Fig. 2 The underlying probability distribution of class Cp is depicted as a density plot. One
can see that the anomalous data is not generated by the underlying probability distribution
of class Cp.

the normal data [37] or, finding a hyperplane which separates the normal data from
the origin [30].

In the next section we briefly explain the immunological process of negative selec-
tion and show according to [17] how it can be abstracted and formalized to solve an
anomaly detection problem.

3 Negative Selection

Negative selection is a process in the immune system to protect the body against
developing self-reactive lymphocytes. Lymphocytes carry recognition units (called an-
tibodies) on their surface and are subdivided in two different classes: B and T lympho-
cytes. The immunological process of negative selection occurs within the thymus on T

lymphocytes only. The thymus forms a highly impermeable barrier to macromolecules
called the blood-thymic barrier. The blood-thymic barrier allows thymocytes (imma-
ture T lymphocytes) to mature and undergo selection in an environment protected
from contact with foreign antigens. During the selection process, antigen presenting
cells present self-peptide/major histocompatability complex (MHC) to the T lympho-
cytes. Those that react strongly (bind with high affinity) with the self-peptide/ MHC
complexes are eliminated through a controlled cell death called apoptosis. As a result,
only those T lymphocytes remain, which can recognize foreign antigens and are not
self-reactive. One can say that the negative selection allows the immune system to
distinguish between self antigens and non-self antigens by generating T lymphocytes
which can recognize only non-self antigens.

This process has formed the foundation for a large amount of work in the field
of artificial immune systems (AIS). In AIS processes and principles of the immune
system are abstracted and applied for solving computational problems. In the following
sections 3.1 and 3.2 the immunological negative selection process is abstracted and
formalized to solve an anomaly detection problem.

3.1 Bit String Matching Rule

A bit string matching rule in the context of AIS is an abstract affinity measure between
antibodies and antigens.
Let U be a universe which contains all 2' distinct bit strings of length I.

Definition 1 A bit string b € U with b = b1by...b; and detector d € U with d =
dids ...d;, match with r-contiguous rule, if a position p exists where b; = d; for
i=p,...,p+r—landp<l—r+1.

Loosely speaking, two bit strings, with the same length, match if at least r contiguous
bits are identical. The r-contiguous matching rule is used primarily in negative selec-
tion [8,9,38,24,32,2]. Other affinity measures used in the field of AIS are Hamming,
Rogers-Tanimoto and r-chunk matching rules [22,6].

In the remaining sections the expression “detectors” will refer to r-contiguous de-
tectors. Sets are denoted in calligraphic letters, e.g. S and |S| denotes the cardinality.
Throughout the paper, if not otherwise stated, we will assume that S contains pairwise
distinct bit strings randomly drawn from U.

3.2 Negative Selection Algorithm

Given U and S, in negative selection one has to find! detectors such that no detector
matches (see Def. 1) with any bit string from S. Detectors which satisfy this property
match with — not necessarily all — bit strings from the complementary space U \ S.
After a detector set D is generated, (unseen) bit strings § C U are matched against the
bit strings of D and classified as anomalous if an r-contiguous match occurs, otherwise
as normal bit strings (see Alg. 1 and Fig. 3)

L «To find” or “to generate” detectors means the same in this article.

Algorithm 1: Negative Selection Algorithm.
input : S C U = normal class training examples, r € N = matching length

1 begin
2 Generate a set D of detectors, such that each fails to match any element in S.
3 Monitor data 6 C U by continually matching the detectors in D against 4. If any

detector matches with §, classify § as an anomaly, otherwise as normal.
4 end

S

01011 10010 .
detector generation 01100 10100 classification
01110 11100 .

D :=DU{d}
candidate r-contiguous no. 00000
detector d match : 00001
I
|
yes I
|
|
=5 |
reject d |
r=3 |
|
|
¥y detected as anomaly
r=3
N
sCU 10000 10010 11110 00110 s 11111 11001 10101

Fig. 3 Principle of negative selection. Detectors are generated in a censoring process called
negative selection such that no detector matches with any bit strings of S. Bit strings § C U
are then classified with the generated detectors as anomalous if an r-contiguous match occurs,
otherwise as normal bit strings.

3.3 Partition of Universe U and Undetectable Bit Strings

Through the application of the r-contiguous matching rule in negative selection, the
universe U is partitioned in distinct subsets. Assume that |S| < v, that is, S contains
less than some threshold v of bit strings and let D be the set of all detectors that can
be generated. In this case the following coherence holds:

U=NUS, SNN =0 and DCWN.

The detector set D is a subset of N, where NV is the set of detectable, i.e. covered bit
strings (see Fig. 4(a)). However, if |S| > v then an additional set is induced, namely
the set H of undetectable bit strings called holes [13]. H contains bit strings which are
not members of S and N (see Fig. 4(b)) and hence cannot be detected by any detector.

(a) The universe U
is partitioned in set
S and N only. The
detectors of D C N
cover all bit strings

(b) contams
more then v bit
strings and this
induces the set H
of undetectable bit

e

) S contains such a
large number of dis-
tinct bit strings and
therefore U/ is only
partitioned in S and

‘H, i.e. no detectors
exist and hence, all
bit strings of U are
undetectable.

of V. strings.

Fig. 4 Coherences of cardinalities of sets S,N,’H and D.

More specifically, the following coherence holds:

U=NUSUH where
NNnH=0, HNS=0 and
DCWN.

NNS =0,

If |S| > v, then the universe I will consist only of the sets S and H (see Fig. 4(c)),
that is no detectors can be generated.

Ezample 1 Letl =4, r =2 and § = {s1, s2, s3}, where s; = {0110}, s = {1010} and
s3 = {1100}. One can easily verify that only one detector can be generated, namely
{0001}. That implies that all bit strings of set> A" = {00+, ¥00%,%* 01} are detectable.
Conversely, all bit strings from U\N = SUH = {s1, s2, 53,0100, 0111, 1011, 1110, 1111}
are not detectable.

By using the same parameters [, and adding one additional normal bit string
s4 = {0011} to S, no detectors can be generated, that is D = () and hence N = ().

3.4 Constructing Holes with the Crossover Closure

Holes can be constructed by the crossover closure method proposed in [15]. The idea
behind the crossover closure is presented in figure 5. Each bit string s € S is subdivided
in [—r + 1 substrings® s[1,...,7],s[2,...,7+1],...,s[l —r +1,...,1] and connected
with a direct edge, if the last » — 1 bits of s[i,...,r + ¢ — 1] are matched with the
first bits of s[i + 1,...,7r + 4], for ¢ = 1,...,l —r and all s € S. Substrings which
are connected with a direct edge are merged over 7 — 1 equal bits to one bit string
of length . By applying the construction method on bit strings of S, only holes can
be constructed which are “crossed” combinations of bit strings of S. To construct all

2 The symbol * represents either a 1 or 0.
3 s[1,...,1] denotes characters of s at positions 1...1.

r—1 r—1
r——r — "
s1= 01— 11—>10 = {0110,1110,1010} = {s1,h1,s2}
s2= 10 01— 10 = {1010,0110,1110} = {s2,s1,h1}
$3= 11— 10— 00 = {1100,0100} = {s3,ha}

(a) Holes (h1 = 1110, ho = 0100) can be constructed
by s1 = 0110, s2 = 1010 and s3 = 1100.

hi= 11— 11—>10 = {1110,0010} = {h1,n2}

ni= 00— 01— 11 = {0011,1111} = {n1,h3)}

(b) An additional hole hz can be constructed by the
already found hole h; = 1110 and n; = 0011.

ni= 00— 01— 11 ={0011,1011} = {n1,h4}
na= 00— 01— 10 ={0010,1010} = {na,s2}
n3= 10 —> 00— 01 = {1001,0001} = {n3,na}

(c) Hole hgy = 1011 can be constructed by ni =
0011, no = 0010 and n3 = 1001.

Fig. 5 Holes constructed by means of the crossover closer method for bit strings from N, S
and H.

existing holes, one has to include in the crossover closure method also bit strings
of N and already constructed holes of H. To clarify this fact and to visualize the
crossover closure method, consider again example 1 with parameters [=4, r = 2 and
S = {s1, 52, s3}. In figure 5(a) one can see, that holes h; = 1110 and hy = 0100 can
be constructed by s; = 0110,s2 = 1010 and s3 = 1100. Moreover as illustrated in
figure 5(b), the additional hole hg = 1111 can be constructed by bit string n; = 0011
and hole h; = 1110. Hole hy = 1011 can be constructed by nj, ng and n3 (see Fig. 5(c)).
The remaining hole (hs = 0111) can be constructed by applying the crossover closure
method on bit strings s; and hgz. This example illustrates that holes are not only
induced by bit strings of S, but also by bit strings of U \ S.

3.5 Holes as Generalization

Holes are undetectable bit strings and hence have to represent unseen bit strings of S
to generalize beyond the training set. The number of holes is determined by |S| and
matching length r. A detector set which generalizes well, ensures that seen and unseen
bit strings of S are not recognized by any detector, whereas all other bit strings are
recognized by detectors and classified as anomalous. A detector set which covers all bit
strings of A/ and all unseen bit strings of S overfits, because no holes (no generalization)
exists. In contrast, the opposite result can occur, that is, a large number of anomalous
bit strings are members of H and hence the detector set consequently underfits. To
summarize, in order to obtain good generalization results, it is crucial to find proper
parameter combinations of |S| and 7, such that the generated detector set generalizes
well. This also includes the topological regions of holes, that is, holes must occur in
regions where most normal bit strings are concentrated.

4 Experiments on Covered Regions and Holes

In order to analyze the generalization capabilities with regard to parameters |S| and r,
two artificially generated data sets are created. Both data sets consists of only normal
examples which where generated by an underlying mixture of Gaussian distributions
with different mean vectors and covariance matrices. The density plots of both prob-
ability distributions and generated normal examples are depicted in figure 6. As the
negative selection operates on bit strings, and examples from data sets 1 and 2 are
two-dimensional real numbers, both data sets are min-max normalization to [0, 1]* and
discretized to binary strings of length | = 16

b1,b2,...,b8,b9,b10,...,b16,

ba by

where the first 8 bits encode the integer z-value iz := [255-z+ 0.5] and the last 8 bits
the integer y-value iy := [255 -y + 0.5], i.e.

0,12 = (ix,iy) € (1,...,256) x (1,...,256) — (bs,by) € {0,1}® x {0,1}5.

This mapping is proposed in [22], and also utilized in [34]. It satisfies a straightforward
visualization of real-valued encoded points in negative selection.

In the appendix (see Figs. 14, 15, 16, 17) the experimental results on the covered
regions with detectors and holes are visualized for different parameter combinations of
|S] and 7. One can see that the number of holes is determined by the cardinality of S
and the matching length 7. Given approximately 250 normal bit strings, no detectors
can be generated for matching lengths » = {5,6}, whereas for approximately 5000
normal bit strings no detectors can be generated for r = {5,6,7} (resp. r = {5,6,7,8}
for data set 2). By increasing stepwise the value of r to the maximum value of r =
16, one can observe that the cardinality of A/, that is, the set which is covered with
detectors increases and in contrast |H| decreases. Moreover, one can also observe that
for approximately 250 normal bit strings the cardinality variation of A" and H for
stepwise increasing the value of r, rapidly occurs, that is, for » < 6 no regions are
covered by detectors, whereas for r > 9 almost all regions are covered. This sharp

Fig. 6 Normal examples of data set 1 (left figure) and 2 (right figure) are sampled from a mix-
ture of Gaussian distributions which are depicted as density plots. Normal data is concentrated
within the high density regions and hence holes must occur within these regions.

phase transition shift of the cardinalities is more closely investigated in section 5.2
and 6.2.

Furthermore, one can additionally observe that holes never occur in dense normal
regions only, or to say it the other way around, the generated detectors are not capable
of covering only anomalous regions and hence the detector set does not generalize
well. This observation is obviously biased by the r-contiguous matching rule. To be
more precise, the inductive bias of negative selection and the associated r-contiguous
matching rule is the assumption that bit string b belongs to the normal class, if b and the
given normal bit strings of S have at least r bits in common. Comparing a consecutive
number of bits as a closeness measure seems not to be an appropriate approach, because

10

the semantic representation of the underlying data can not be properly captured, or in
other words, the inductive bias cannot be learned. The r-contiguous matching rule and
three additional rules (Hamming, Rogers-Tanimoto and r-chunk) are tested in a similar
experiment [22] and reveals comparable results, even if the representation is encoded
in Gray codes. The crucial fact of having a proper inductive bias is well known in the
machine learning community [25], however in the context of pattern classification and
negative selection, it was only discussed in [19].

5 Generating Detectors Randomly

A straightforward approach to generate detectors is to randomly sample a bit string d
from U and to match d against all bit strings in S. When no r-contiguous match occurs,
d is added to the detector set D [17]. This random sampling is repeated until a certain
number of detectors is found (see algorithm 2). It is obvious that this straightforward
random search is not an efficient search technique.

However, a thorough probabilistic analysis of algorithm 2 reveals valuable insights,
whether detectors can or can not be generated and how U is partitioned with respect
to parameters |S|,! and .

Algorithm 2: Random search for detectors in negative selection
input :[l,r;t € Nwherel<r<land SCU
output: Set D C U of r-contiguous detectors

1 begin

2 D:=0

3 while |D| < ¢t do

4 Sample randomly a bit string d € U

5 if d does not match with any bit string of S then
6 | D:=Du{d}

7 end

5.1 Probability of Matching in Random Detector Generation

The probability that two randomly drawn bit strings from U are not matching with the
r-contiguous rule can be determined with approaches from probability theory, namely
recurrent events and renewal theory [16]. In Feller’s textbook on probability theory an
equivalent4 problem is formulated as follows:

“A sequence of n letters S and F' contains as many S-runs of length r as there
are non-overlapping uninterrupted blocks containing exactly r letters S each”.

4 The Link between recurrent events, renewal theory and the 7-contiguous matching proba-
bility was discovered originally in [27] and rediscovered in [28]. Percus et al. presented in [27]
the probability approximation (2) which is only valid for » > [/2. However, they also cited Us-
pensky’s textbook (see pp. 77 in [39]), where the approximation of the r-contiguous matching
probability for 1 < r <[is presented.

11

Given a Bernoulli trial with outcomes S (success) and F (failure), the probability of
no success running of length r in [trials is according to Feller
_ 1—pz 1
T (r+1-rx)q 2!

(1)

where

2

p=q=- and z=1+¢q +(r+1)(gp")"+...

2
A simpler approximation — however only valid for r > /2 (see [41,35]) — is provided
in [27]:
P=1-2""[1-r)/2+1]. (2)

From (1) one can straightforwardly conclude that the probability of finding ¢ detectors
when given [, and |S| results in:

Problfind ¢ detectors] = ¢~ ' - pISl (3)

Moreover, from (3) one can conclude how often on average step 4 in algorithm (1) is
executed when given ¢, or in other words how many bit strings one has to sample before
finding ¢ detectors.

1

R N
t—1. plS|

(4)

Result (4) is equivalent to an earlier result provided in [17], when P is replaced by P.

|S| = 1000

19 19 ——

g E 1

g g 1

b b 1

1 1 1

0.8 0.8 h

] ____|8l=1 i :

£] 1 !
2 o] ____|8=10 06] 1
]]] 1
] — i 1

E 1 | | -f--4----= |S| = 100] h
g g 1

a4 (| | | a«f----_ |S| = 1000 0.4 1

b b 1

] - — — — |S| = 10000] '

]] 1

0.2: 012: 1

1

]] 1

i/] 1

L s s e e I S LA B s s e | Lo o e e L o e e B e e

5 10 15 20 1 5 10 1 15 20 1

- i1 e i e i3 !

matching length r

(a) Matching probability for finding a detec- (b) If r lies within interval 41, then with

tor randomly for | := 24, r := {1,2,...,24} high probability no detectors will be found,

and |S|:= {1, 10,100, 1000, 10000}. whereas if r lies within interval i3, then
with high probability, detectors will be found.
There also exists an interval i where the
probability rapidly changes from 0 to 1.

Fig. 7 Coherence between the probability of finding a detector randomly and the parameters
I, and |S|. There exists a sharp transition boundary where the probability rapidly changes
from O to 1.

12

5.2 Probability Transition in r-contiguous Matching

Knowing the probability P enables us to investigate the combinations of parameters
|S|,1 and r where, with high probability detectors can be generated or with high prob-
ability can not be generated. The graphs in figure 7 show the probability for finding a
detector for fixed ! and variable r and |S| according to term (3). One can see, that the
larger the cardinality of S, the larger the interval for r» where the resulting probability
is nearly O to find a detector. On the other hand, the smaller the cardinality of S, the
larger the interval for r where the resulting probability is nearly 1 to find a detector.
In figure 7(b) the graph for |S| = 1000 is highlighted. One can see in detail that three
different intervals (41,42, 43) exist. One can either find with high probability a detector
if r falls in interval i1, or find with high probability no detector if r falls in interval i3.
Moreover, there exists a third interval io where the probability rapidly changes from 0
to 1. For the sake of conformity with the subsequent sections, we denote the interval
i2 as phase transition region. We will later see that finding detectors in this region,
which is characterized by certain combinations of parameters |S|, 1, is hardest from
the perspective of computational complexity.

To summarize this section, if parameters |S|,! and r are chosen such that term (3)
results in a value very close to 0, then in the worst case no detectors can be generated,
never mind which algorithms, i.e. search techniques are applied to generate detectors,
because there exist no detectors. On the other hand, if term (3) is close to 1, then a
large number of detectors exist.

5.3 Coherence of Matching Length r, Self Set S and Random Detector Search

In the AIS community there seems to exist some confusion regarding the time complex-
ity of algorithm (1). [17] argued that generating detectors when applying the random
search approach can be performed linearly in |S|. Their argument is based on the obser-
vation that 7 in (4) is minimized by choosing 1— P ~ 1/|S|. In other words, the number
of bit strings one has to sample before finding ¢ detectors is linear proportionally to |S]|,
when using algorithm (1). This observation implies that the matching length r purely
depends on the cardinality of S when [is fixed. To be more precise, suppose r > /2,

then

Lol
2T (I — 1) /24 1]~ S| = % ~(l—r42). 27T+ (5)
l
81n(2)2 1I|1§|)2 ~ (=7 +2)In(2) T R@) ()

W (81n(2)2'/|S))
In(2)

where W (z) is the Lambert W-function which can be expressed as the series expansion

—ral+2-—

(7)

(_1 k—lkk:—2

W) = 3o ®)
k=1

and provides a solution to the problem Y = Xe¥ = X = W(Y). Practically speak-
ing, once |S| and ! are fixed, the matching length r is chosen according to (7) and this

13

10000 20000 30000 40000 50000 60000
|S]
Fig. 8 Coherence of matching length r and growing cardinality of S in Eq. 7 for [= 16.

consequently implies that r grows exponentially in |S| and “quickly” approaches to [
(see Fig. 8), that is

. W(sIn(2)2'/|S)) W(8In(2)
2

In terms of the inductive bias of the r-contiguous matching rule, the dependence
between 7 and |S| in (7) is problematic because the value of 7 is inextricably linked to
the underlying data being analyzed. To be more precise, the value of r must capture
the underlying features of the data — Freitas and Timmis termed this, the positional
bias [19].

According to assumption 1 — P ~ 1/|S| and term (7), the value of r is however
determined independently of the underlying data — the value of r depends only on the
cardinality of S. Let us assume that S contains 1000 bit strings sampled from some
distribution P, and the value of r is appropriately determined, that is, it captures
semantically the features of the underlying data. Let us now assume that S contains
2000 bit strings sampled from P, it is clear that the value of r has to be equal to the
value of r which is determined previously for 1000 bit strings. According to assumption
1-Pr~ 1/|S| and term (7) however, the value of r depends only on the cardinality of
S rather than the semantics of the underlying data.

5.4 Average Number of Detectors and Holes

By applying the results from the previous section 5.1, one can approximate the average
number of detectors that can be generated and the number of resulting holes.

Knowing this coherence between term (3) and the universe composition, the average
number of detectors that can be generated results in

E[D[] = 2. PISI. (10)
As the universe is composed of Y = S UN U H, the number of holes results in

[H| = U] = V] = |S] (11)

14

where

E(N) =2 — ol . pEIIPI (12)
[

Number of bit strings
not detected by E[|D|]
detectors

and hence the average number of holes results in
E[H| =2' - PEIPI _|s). (13)

In figure 9, the term (10) and (13) is plotted for I = 12,7 = 7 and |S| := {1,2,...,2'}.
Additionally, for each cardinality value of S (randomly drawn from U/) the resulting
number of detectors that can be generated and resulting holes (black and gray circles)
is empirically determined and depicted. One can see that term (10) and (13) are rea-
sonable estimations of the number of detectors that can be generated as well as the
number of resulting holes. Furthermore, one can see the exponential decrease of the
number of detectors and as a countermove the increase of holes for |S| :={1,2,..., 2l}.
If the maximum number of possible holes is reached, then |H| decreases linearly to the
value of 0 because the relation || = |S| + |N| + |H| must hold.

6 The Link between r-contiguous Detectors and k-CNF Satisfiability

In this section we outline the Boolean satisfiability problem and subsequently show
how detectors are related to that problem.

The Boolean satisfiability problem (short SAT) is a decision problem and can be
formulated in terms of the language SAT [7]. An instance of SAT is a Boolean formula
¢ composed of A (AND), vV (OR), ~ (NOT), — (implications), < (if and only if), vari-
ables x1,x2, ..., and parentheses. In SAT problems, one has to decide if there is some
assignment of true and false values to the variables that will make the Boolean for-
mula ¢ true. In the following sections, we will focus on Boolean formulas in conjunctive
normal form.

A Boolean formula is in conjunctive normal form (CNF), if it is expressed as an
AND-combination of clauses and each clause is expressed as an OR-combination of one
or more literals. A literal is an occurrence of a Boolean variable z or its negation T.

Ezample 2

literal
(:131 \/Tl\/52)/\(%3\/1’2\/:)34)/\(51\/fg\/f4)

clause

A Boolean formula is in k-CNF, if each clause has exactly k distinct literals. Exam-
ple (2) shows a 3-CNF Boolean formula. A k-CNF Boolean formula is satisfiable if
there exists a set of values (0 = false and 1 = true) for the literals that cause it to
evaluate to 1, i.e. the logical value true. A possible assignment set of Boolean values
that evaluate in example (2) to true is, x1 = 1,22 = 1,23 = 0,24 = 0 (or expressed

15

Graph according to (10)

3000 4000
1 1

2000
1

|D|, |H| resp.

1000
1

Graph according to (13)

u

T T T T T
0 1000 2000 3000 4000

IS

Fig. 9 Coherence between the number of detectors that can be generated and the resulting
number of holes for [= 12,7 = 7 and |S| := {1,2,...,2'} (randomly drawn from /). The black
and gray circles are empirically determined values of |D| and |H|, the black and gray colored
graph denotes the analytically determined values according to (10) and (13).

as a bit-string 1100). In k-CNF-SAT, we are asked whether a given Boolean formula
in k-CNF is satisfiable. It is known that for k£ > 2, k-CNF-SAT is A"P-complete [29],
i.e. this problem is verifiable in polynomial time, but no-one has yet discovered an
algorithm for solving all k-CNF-SAT instances in polynomial time.

We will now consider a special subset of Boolean formulas in k-CNF which are
defined as follows:

Definition 2 A k-CNF Boolean formula ¢,..p is in I-k-CNF, when ¢,..;, has (I —k+1)
clauses C1,C2,...,Cj_g41 for 1 < k < [and k — 1 equal literals in C;, C;yq for
i=1,2,...,l—k

01:(:01 Vxzo V ... V mk)
Co=(zg V3 V...V xk+1)

Crokt1 = (T1—p1 V Zy—py2 V ... V 27).

Recall detectors are bit strings of ¢« which do not match with any bit strings of length
[from §. We subsequently show a transformation of bit strings of S into I-k-CNF

16

Boolean formulas.

Let b € {0,1} and £(b) a mapping defined as:

£(b)—>{x it b=0

T otherwise

where x,T are literals.

Let k,1 € N, where k <l and s € U, where s[i] denotes the bit at position ¢ of bit-string
s, and €(s, k) a l-k-CNF mapping defined as:

C(s, k) — (L(s[1]) vV £(s[2]) V ... V £(s[k])) A
(L£(s2]) v £ VooV L(slk+1]) A

(Ssll—k+1]) V... v £(s[).

For the sake of clarity we denote a Boolean formula in [-k-CNF which is obtained by
&(s, k) for s € S as ¢cp. Moreover we denote a Boolean formula /\‘iil1 qbicb which is ob-
tained by €(s1,k) A €(s2,k) A ... A &(s|g, k) for [S| > 1andalls; €S, i=1,...,]S|

as (grcb- If |S| =1, then ¢,.cp = Prep-

Proposition 1 Given U, S and ‘the set D which contains all detectors that can be
generated. The Boolean formula ¢,.cp, which is obtained by €(s,r) for all s € S is
satisfiable only with the assignment set D.

Proof Transforming s; € S with €(s1,k) in a I-k-CNF, where k := r, results due to
£(+) in a Boolean formula which is only satisfiable with bit strings from U \ F;, where
the symbol * represents either a 1 or 0 and

F = 1,... e
1 {51[) 7T] X * *,
l—r
*81[2, .., r 1] kk Lk,
l—r—1
e l— 1,...,1}.
ksl =41, 1)
l—r
Transforming the remaining s; = s, s3, ..., 5|5 with ¢(s4, k) and constructing cgmb =
Oty N B2 A oo A ¢|T“1 results in a Boolean formula which is only satisfiable with

bit strings from U \ (F1 U F2 U... U F|s|). Each detector of D has no matching bits
at s;[1,...,7],8:[2,...,r+ 1], . 8l —r+1,...,0] for i =1,2,...,|S|. Hence, $ch is
only satisfiable with assignment set U/ \ (F1 UF2U...U F|5)) = D.

17

Ezample 8 Let | = 5, r = 3 and S = {s1, $2, 3, 54, S5, S} with the following bit
strings:

s1 = {01011}, sy = {01100}, s3 = {01110},
s4 = {10010}, s5 = {10100}, sg = {11100}.

Generating all possible detectors, one obtains the detector set D = {d1,ds,ds, d4, ds5}:

d1 = {00000}, dy = {00001}, ds = {11000},
dy = {11001}, d5 = {00111}.

Transforming all s € S with €(s,r), one obtains:

1 — —

¢ch:(x1 V To V xg) AN (xz V x3 V x4) A
(x3 V T4 V Ts)

2 = _

Prep = (1 V T2 V T3) A (T2 V T3 V 34) A
(53 V x4 V 135)

G = (21 V To V T3) A (T2 V Ty V Ty) A
(T3 V T4 V 5)

4 _ _

¢ch:(x1 V xo V xg) A (xz V x3 V x4) A
(x3 V Ty V x5)

5 _ _ _

Grep = (T1 V 22 V T3) A (T2 V T3 V 34) A
(Tg V x4 V x5)

o =(T1 V Ta V T3) A (T2 V T3 V a4) A
(T V x4 V x5)

"N 1 2 3 4 5 6
¢rcb = ¢rcb A ¢ch A ¢rcb A ¢ch A ¢ch A ¢rcb'

The Boolean formula amb is satisfied only with the assignment
set {00000, 00001, 11000, 11001, 00111} = {d;,d2,ds,d4,ds} = D.

6.1 Unsatisfiable CNF Formula and No Generable Detectors

In this section, we use our obtained transformation result (Proposition 1) to demon-
strate involving properties on the number of detectors that can be generated. An ex-
ample is the question: Given S and r, is it possible to generate any detectors at all?

One approach to answer this question is to apply a variant of the Lovéasz Local
Lemma [40]. More specifically we define according to [40], vbl(C) as the set of variables
that occur in clause C, i.e. {x € V|z € C or T € C}, where V is a set of Boolean
variables. Moreover, as defined in [40], the neighborhood of C in ¢, is the set of
clauses distinct from C' in ¢,..;, that depend on C, or more formally:

F¢rcb (O) = {Cl € d)rcb | Cl 7{ C'and
wbl(C) Nwbl(C") # 0}

18

¢>icb = (z1VeaV..VT)A(22VE3V. . VT py)N A (VT L1V VT)N AT e 1 VT g2V V)
Grep = (x1VazaV.. Ve)A(z2VEe3V..Varp)A A (2 VE f 1V VT e DA CA(Z 1 VT g2V V)

cd
k2
¢icb = (z1VaaV..Vzr)A(22VE3V. . VT)AL A (VT 1V VT 1) A AN(Z 1 VE g2 Ve V)
T ; (CDI=2(r=1)
1

s
¢>‘Tct‘) = (z1VeaV..VT)A(22VE3V. . VT py)AL A (VT L1V VT)N AT e 1 VT g2V V)

Fig. 10 Cg has at most 2 (r — 1) many neighborhood clauses in d)icb (r—1to left and r — 1
to right) and at most (2(r — 1) + 1) - (|S| — 1) many neighborhood clauses in all remaining

1 2 j—1 j+1 IS]
Boolean formulas ¢, &% 1y @y s Prop s+ s Proct-

Proposition 2 Let S be a set of bit strings of length |, where all s € S are consisting
of pairwise distinct substrings s[1,...,7],s[2,...,r+1],...,sl—r+1,...,l]. Detectors
can be generated, if

2" et 41

S
|51 < 2r—1

Proof For each s € S construct a Boolean formula ¢’ in I-k-CNF by €(s,). Construct

a related k-CNF Boolean formula amb = qbicb A qﬁfcb Ao A qb‘ril‘). Let Cg be the i-th

clause in d)icb’ 1<5 <8 C’g has at most 2 (r — 1) many neighborhood clauses in czﬁﬁcb
and at most (2 (r—1)+1)-(|S|—1) many neighborhood clauses in all remaining Boolean
formulas ¢ ,, 2 ...,¢i;b1, 1 ...,d)‘s‘ In total this results in |S| - (2r — 1) — 1

rcbr Freby reb) rcb’
dependent clauses (see Fig. 10).
A variant of the Lovasz Local Lemma [40] implies that if |I'w(C)] < 2872, k e N
for all clauses C in a k-CNF formula F', then F' is satisfiable. Applying the variant of

the Lovasz Local Lemma results in
IS|-(2r —1) =1 <272 < 2" /e.

A more computational oriented approach to answer the question: Is it possible
to generate any detectors at all? Is to apply the Davis-Logemann-Loveland (DLL5)
algorithm. The DLL algorithm [11] is based on the elimination rules proposed in [12]
and terminates either with result unsatisfiable (empty clause) or satisfiable (empty ¢).
Moreover the DLL algorithm can be used to quantify the computational “hardness” of
finding detectors by counting the number of backtracking attempts when evaluating
the k-CNF input instance.

To be more precise, the algorithm is a depth-first search technique and uses recur-
sive backtracking for guiding the exploration. The algorithm constructs a decision tree,
where assignments of the variables coincide with paths from the root to the leafs. If a
path leads to an unsatisfiable result, then the algorithm backs up to a different branch.
This recursive search is reiterated until it terminates with a satisfiable or unsatisfiable
result. In the worst case the whole decision tree has to be inspected, i.e. it will take

5 The DLL algorithm is sometimes also called DPL or DPLL algorithm [18,26].

19

an exponential number of evaluations — similar to an exhaustive search. However on
average the DLL algorithm is much faster because it can prune whole branches from
the decision tree without exploring the leaves.

Given a Boolean formula ¢ in CNF, a literal [in ¢ and the reduction function R(¢,!)
that outputs the residual formula of ¢ by:

— removing all the clauses that contain [, B
— deleting ! from all the clauses that contain [,
— removing both ! and I from the list of literals.

A clause that contains one literal is called unit clause, and a literal [is called monotone,
if [appears in no clause of ¢. In lines 2-7 the reduction function is applied whenever a

Algorithm 3: Davis-Logemann-Loveland algorithm (DLL(-))

input : ¢ (Boolean formula in CNF)
output: SATISFIABLE or UNSATISFIABLE
1 begin

2 forall unit clauses {l} in ¢ do
3 ¢ — R(¢,1)
4

5

if ¢ includes empty clause then
|_ return UNSATISFIABLE

6 forall monotone literals | in ¢ do
7 L ¢ R(¢,0)
8 if ¢ is empty then

9 | return SATISFIABLE

10 choose a literal [in ¢

11 if DLL(R(¢,1)) = SATISFIABLE) then
12 |_ return SATISFIABLE

13 if DLL(R(¢,1)) = SATISFIABLE) then
14 |_ return SATISFIABLE

15 return UNSATISFIABLE

16 end

unit clause or a monotone literal is found. The subsequent recursive call is performed in
lines 11, 13 respectively. “Easy” input instances imply that the DLL algorithm requires
few backtracking attempts because clauses and literals can be efficiently eliminated
by means of R(¢,l) without executing many subsequent recursive calls. On the other
hand, “hard” instances imply that many recursive calls or backtracking attempts are
required. In the next section, the terms “easy” and “hard” are clarified. More specifically,
it will be shown that parameters |S|, [and r specify the ratio of the number of clauses to
variables of the (;Aﬁmb instances and therefore characterize the computational complexity
of the DLL algorithm.

6.2 Phase Transition in k-CNF Satisfiability

The k-CNF satisfiability problem is A'P-complete for k > 2, however, this fact does not
imply that all instances of the k-CNF satisfiability problem are intractable to solve. In

20

point of fact, there exists many problem instances which are “easy” to solve, i.e. one
can efficiently decide whether the instance is satisfiable or is unsatisfiable. On the other
hand there also exist problem instances which are “hard”; i.e. one can not efficiently
decide whether the instance is satisfiable or is not satisfiable. The computational “hard-
ness” of finding assignments sets for randomly generated instances is characterized by
the ratio [20]

number of clauses

= . 14
Tk number of variables (14)

If the Boolean formula ¢ has many variables and few clauses, then ¢ is under-constrained
and as a result, there exist many assignment sets. The DLL algorithm requires for
under-constrained problem instances few backtracking attempts and therefore “easily”
deduces the satisfiability. On the other hand, if the ratio of the number of clauses to vari-
ables is large, then ¢ is over-constrained and almost has no satisfying assignment set.
Such over-constrained instances are likewise “easily” deducible for the DLL algorithm.
However, there also exists a transition from under-constrained to the over-constrained
region. In such a phase transition region, the probability of the instances being sat-
isfiable equals 0.5 and thus one has the largest uncertainty whether the instances are
satisfiable or are unsatisfiable.

For the 3-CNF satisfiability problem, the ratio (phase transition threshold) is ex-
perimentally approximated by 4.24 [18,31]. That means, when 73 is close® to 4.24,
the DLL algorithm has to backtrack most frequently to determine the final result. If
the Boolean formula is under-constrained (r3 < 4.24) or over-constrained (r3 > 4.24),
then the algorithm prunes whole branches from the decision tree, without exploring
the leaves and terminates after few recursive calls.

6.3 Average Number of Distinct Clauses

Given S, 1 and 7, the constructed Boolean formula ¢,.., contains in total (l—r+1)-|S|
clauses. However, $ch does not necessarily contain (I —r + 1) - |S| pairwise distinct
clauses. Two clauses are distinct from each other, if they differ in at least one literal.
In point of fact, if [> r, then a large number of equal clauses occur in $ch. Equal
clauses in czAﬁch however, do not bias the computational complexity. To quantify the
computational complexity by means of the DLL algorithm, one has to determine the
average number of pairwise distinct clauses.

Ezample 4 Let S := {0101, 1101} and r = 3, hence byep Tesults in
(131\/fg\/xg)/\(fz\/xg,\/f;;)/\(fl \/fg\/xg)/\(fz\/xg\/f;;).

Example 4 shows that the second and the fourth clause are equal, because the last
three bits of 0101 and 1101 are equal.

Proposition 3 Given bit string length I, matching length v and S which contains pair-
wise distinct bit strings s1,82,...,8|s| randomly drawn from U. The average number
of pairwise distinct clauses is

1 |S|(I—r+1)
) (I—-r+1)2". (15)

E[|$rcb|] =2" (l —T+ 1) - <1 - m

6 Tt is still an open problem to prove where the ezact phase transition threshold is located.
Latest theoretical work [1] shows that the threshold r lies within the boundary 2.68 < ry <
4.51 for k = 3.

21

Proof Construct a lookup table ¥ which contains all 2" - (I — r + 1) clauses with label
T and is of the form

clause label
(z1 V xo V ...V Zp_1 Vo) T
(z2 V 3 vV ...V zp V zry1) | T
(mlfrJrl V Zj—pyo V ...V 211 V xy) T
(z1 V x2o V ...V Zp_1 V Tp) T
(z2 V 3 V..oV zeV V Tpy1) | T
(Tr—rp1 V Ty—pg2 V..oV T VT T
(fl V T \Y V ZTp—-1 V acr) T
(T2 V T3 \% VvV Tp V Tpry1) | T
FTppq1 V Tppy2 V ...V T VT T

Transform S into the corresponding Boolean formula amb and set the label to F
whenever a clause in ¥ is member of $ch. As S is randomly drawn without replacement
from U, the F' and T labels are binomially distributed in . The probability of finding
no clauses which are labeled with F' when randomly drawn |S|- (I —r+ 1) clauses from

T results in
1 |S|(1—r+1)
(1_ (l—r—|—1)2’”>

and hence, the total number of clauses with label F' results in

) |S|(1—r+1)
) (I—r+1)2".

2T(l—r+1)—<l—m

7 Experiment with d:,.cb Instances

The computational complexity of finding detectors is experimentally investigated with
the DLL algorithm. More specifically, the parameters | = 75,7 = 3 are chosen and
|S| is varied from 1 to 25, i.e. for each cardinality value from 1 to 25, S contains
distinct bit strings which are randomly drawn from U/. As a result, one obtains Boolean
formulas ¢, in 75-3-CNF with 75 variables and (75 =3+ 1) - |S]| clauses, E[|$mb|]
distinct clauses, respectively. To obtain a large number of different amb instances,
for each value of |S|, 300 instances are randomly generated. The DLL algorithm is
applied on each instance and the results: satisfiable/unsatisfiable and the number of
backtracking attempts are noted. The result is depicted in figure 11. The abscissa
denotes the ratio of the average number of distinct clauses to variables. The ordinate
denotes the number of backtracking attempts (computational costs). The resulting
ordinate values are colored gray if the DLL algorithm outputs satisfiable, otherwise it
outputs unsatisfiable and the values are colored black. One can see in figure 11 that for
(r3 < 4) alarge number of satisfiable instances exist. Or to say it the other way around,

22

250

200

150 1

Computational costs

100 4

50

1 2 3 4 5 6 7

Ratio of E[|¢,c|] to number of variables (I = 75)

Fig. 11 Number of backtracking attempts (computational costs) of the DLL algorithm to

decide whether a q?mb instance is satisfiable or unsatisfiable. The gray points denote satisfiable
instances whereas black points denote unsatisfiable instances. The “hardest” instances are lying
in the interval 4 to 5, termed phase transition region.

for small values of |S| the resulting Boolean formula amb is under-constrained and
therefore a large number of satisfiable instances exist. The DLL algorithm hence “easily”
deduces a satisfiability result. The number of satisfiable and unsatisfiable instances is
nearly equal for (4 < r3 < 5). These instances have the largest uncertainty for the
DLL algorithm. As a consequence, the DLL algorithm requires the most backtracking
attempts to determine whether the instances are satisfiable or are unsatisfiable. A
ratio (r3 > 5) implies that a large number of over-constrained instances exist and
hence, the DLL algorithm “easily” deduces the unsatisfiable result. Another way to
visualize this “easy-hard-easy” pattern, is to plot the percentage of satisfiable instances
on the ordinate (see Fig. 12). One can see that the probability of the instances being
satisfiable equals 0.5 when (4 < r3 < 5) and rapidly changes to 1 for (r3 < 4) and to
0 for (rg > 5).

7.1 Complexity of Algorithms to Generate Detectors

In the last 10 years several algorithms are proposed to generate detectors. Moreover, it
was an open problem whether generating all detectors can be performed efficiently, i.e.
in polynomial time and with polynomial space occupation with regard to parameters
r and |S|, because all proposed algorithms (see Fig 7.1), either have a time or a space
complexity which is exponential in the matching length r, i.e. O(2").

There seems to be strong evidence that finding all detectors require at least 2(2")
bit string evaluations. This assumption is thereby justified, that 2(2") evaluations are
required for finding all satisfying sets for the first clause of each s € S. Additionally,

23

1.0+

0.8 1

0.6 1

0.4 4

Percent satisfiable

0.2 9

0.0 1

1 2 3 4 5 6 7

Ratio of E[|$T.cb|] to number of variables (I = 75)

Fig. 12 Coherence between the percentage of satisfiable instances and the ratio of E[|$ch\}/l.
The “hardest” instances live in the region where the number of satisfiable and unsatisfiable
instances is equal, or in other words, the probability of instances being satisfiable equals 0.5.

Linear time detector generating algorithm [13]:

Time : O((l—-7)-[S)+0O((l—-7)-2")4+0O(-|D])
Space : O((l—r)%-27)

Greedy detector generating algorithm [13]:

Time : O((l-r)-|D|-27)
Space : O((l—r)%-27)

Binary template algorithm [42]:

Time : O((l—7)-2"-|D|)+ 02" -|S))
Space : O((l—r)-2")+0O(|D])

NSMutation algorithm [2]:

Time : O(2'-|S))+0(|D|-2")+0O(|D))
Space : O(-(|S|+|D))) + O(|D))

Fig. 13 Complexity overview of proposed algorithms for generating detectors.

24

the remaining (I — r) clauses of each s € S must be verified, which in total could be
done in at most O(|S| - 2¥) evaluations. Moreover as outlined in section 6, the k-CNF
satisfiability problem is a decision problem, where the input is a Boolean formula f and
the output is “Yes”, if f is satisfiable, and “No”, otherwise. The currently fastest known
deterministic algorithm that decides the 3-CNF problem, runs in time O(1.473™) [5],
where n is the number of variables. The probabilistic algorithm variant runs in time
0(1.3302") [23].

We would like to emphasize here, that the deterministic and probabilistic k-CNF
algorithms decide if a Boolean formula is satisfiable. However the algorithms do not
determine all satisfiable assignment sets — in our case, all detectors that can be gen-
erated.

8 Conclusion

Negative selection and the associated r-contiguous matching rule is a popular immune-
inspired method for anomaly detection problems. However, until now there has been
limited available theoretical work from the perspective of a pure pattern classifica-
tion problem and the computational complexity of generating detectors. In this article
we studied the generalization capability of negative selection and the associated 7-
contiguous matching rule. Moreover, the partition of the universe I/ in distinct subsets
S,H and N was explained. Based on the probability of the r-contiguous matching
rule, the average number of detectors and holes was determined and the resulted im-
plications were discussed. Furthermore, we have shown that the problem of generating
r-contiguous detectors, when given S and matching length r can be transformed into
an instance of the k-CNF satisfiability problem. The assignment set of the Boolean
formula in k-CNF is the detector set D. This result was exploited to provide insights
into the computational complexity of generating detectors and insights when detectors
can be generated at all.

Based on these observed facts we can state that the negative selection algorithm
and the associated r-contiguous matching rule is not appropriate for anomaly detection
problems.

Acknowledgment

The author thanks Erin Gardner and Dawn Yackzan for their valuable suggestions and
comments.

References

1. Achlioptas, D., Naor, A., Peres, Y.: Rigorous location of phase transitions in hard opti-
mization problems. Nature 435, 759-764 (2005)

2. Ayara, M., Timmis, J., de Lemos, R., de Castro, L.N., Duncan, R.: Negative selection: How
to generate detectors. In: Proceedings of the 1nd International Conference on Artificial
Immune Systems (ICARIS), pp. 89-98. University of Kent at Canterbury Printing Unit
(2002)

3. Balthrop, J., Forrest, S., Glickman, M.: Revisiting lisys: Parameters and normal behavior.
In: Proceedings of Congress On Evolutionary Computation (CEC), pp. 1045-1050. IEEE
Press (2002)

25

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

. Bishop, C.M.: Novelty detection and neural network validation. IEE Proceedings - Vision,

Image and Signal processing 141(4), 217-222 (1994)

. Brueggemann, T., Kern, W.: An improved deterministic local search algorithm for 3-SAT.

Theoretical Computer Science 329(1-3), 303-313 (2004)

. de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence

Approach. Springer Verlag (2002)

. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, second

edn. MIT Press (2002)

. Dasgupta, D., Forrest, S.: Tool breakage detection in milling operations using a negative-

selection algorithm. Tech. Rep. CS95-5, University of New Mexico (1995)

. Dasgupta, D., Forrest, S.: Novelty detection in time series data using ideas from immunol-

ogy. In: Proceedings of the 5th International Conference on Intelligent Systems, pp. 82-87
(1996)

Dasgupta, D., Forrest, S.: Artificial Immune Systems and their Applications, chap. An
Anomaly Detection Algorithm Inspired by the Immune System, pp. 262-277. Springer-
Verlag (1998)

Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Com-
munications of the ACM 5(7), 394-397 (1962)

Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the
ACM (JACM) 7(3), 201-215 (1960)

D’haeseleer, P., Forrest, S., Helman, P.: An immunological approach to change detection:
algorithms, analysis, and implications. In: Proceedings of the Symposium on Research in
Security and Privacy, pp. 110-119. IEEE Computer Society Press (1996)

Esponda, F., Forrest, S.: Detector coverage under the r-contiguous bits matching rule.
Tech. Rep. TR-CS-2002-03, University of New Mexico (2002)

Esponda, F., Forrest, S., Helman, P.: The crossover closure and partial match detection. In:
Proceedings of the 2nd International Conference on Artificial Immune Systems (ICARIS),
Lecture Notes in Computer Science, vol. 2787, pp. 249-260. Springer-Verlag (2003)
Feller, W.: An Introduction to Probability Theory and its Applications, vol. 1, 3. edn.
John Wiley & Sons (1968)

Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a com-
puter. In: Proceedings of the Symposium on Research in Security and Privacy, pp. 202-212.
IEEE Computer Society Press (1994)

Freeman, J.W.: Hard random 3-SAT problems and the Davis-Putnam procedure. Artificial
Intelligence 81(1-2), 183-198 (1996)

Freitas, A.A., Timmis, J.: Revisiting the foundations of artificial immune systems: A
problem-oriented perspective. In: Proceedings of the 2nd International Conference on
Artificial Immune Systems (ICARIS), Lecture Notes in Computer Science, vol. 2787, pp.
229-241. Springer-Verlag (2003)

Gent, I.P., Walsh, T.: The SAT phase transition. In: Proceedings of the 11th European
Conference on Artificial Intelligence, pp. 105-109. John Wiley & Sons (1994)

Glickman, M., Balthrop, J., Forrest, S.: A machine learning evaluation of an artificial
immune system. Evolutionary Computation 13(2), 179-212 (2005)

Gonzalez, F., Dasgupta, D., Gomez, J.: The effect of binary matching rules in negative
selection. In: Genetic and Evolutionary Computation — GECCO, Lecture Notes in Com-
puter Science, vol. 2723, pp. 195-206. Springer-Verlag, Chicago (2003)

Hofmeister, T'., Schoning, U., Schuler, R., Watanabe, O.: A probabilistic 3-SAT algorithm
further improved. In: 19th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), Lecture Notes in Computer Science, vol. 2285, pp. 192-202. Springer-Verlag
(2002)

Hofmeyr, S.A.: An immunological model of distributed detection and its application to
computer security. Ph.D. thesis, University of New Mexico (1999)

Mitchell, T.: Machine Learning. McGraw Hill (1997)

Ouyang, M.: How good are branching rules in DPLL. Discrete Applied Mathematics
89(1-3), 281-286 (1998)

Percus, J.K., Percus, O.E., Perelson, A.S.: Predicting the size of the T-cell receptor and
antibody combining region from consideration of efficient self-nonself discrimination. Pro-
ceedings of National Academy of Sciences USA 90, 1691-1695 (1993)

Ranang, M.T.: An artificial immune system approach to preserving security in computer
networks. Master’s thesis, Norges Teknisk-Naturvitenskapelige Universitet (2002)
Reischuk, K.R.: Einfiihrung in die Komplexitédtstheorie. B.G. Teubner Stuttgart (1990)

26

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
. Welzl, E.: Boolean satisfiability — combinatorics and algorithms (2005). Lecture Notes

41.

42.

Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating
the support of a high-dimensional distribution. Neural Computation 13(7), 1443-1471
(2001)

Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems. Arti-
ficial Intelligence 81(1-2), 17-29 (1996)

Singh, S.: Anomaly detection using negative selection based on the r-contiguous matching
rule. In: Proceedings of the 1st International Conference on Artificial Immune Systems
(ICARIS), pp. 99-106. Unversity of Kent at Canterbury Printing Unit (2002)

Steinwart, I., Hush, D., Scovel, C.: A classification framework for anomaly detection. Jour-
nal of Machine Learning Research 6, 211-232 (2005)

Stibor, T'., Timmis, J., Eckert, C.: Generalization regions in hamming negative selection.
In: Intelligent Information Processing and Web Mining, Advances in Soft Computing, pp.
447-456. Springer-Verlag (2006)

Stibor, T., Timmis, J., Eckert, C.: The link between r-contiguous detectors and k-CNF
satisfiability. In: Proceedings of Congress On Evolutionary Computation (CEC), pp. 491—
498. IEEE Press (2006)

Tarassenko, L., Hayton, P., Cerneaz, N., Brady, M.: Novelty detection for the identification
of masses in mammograms. In: Proceedings of the 4th IEE International Conference on
Artificial Neural Networks, pp. 442-447 (1995)

Tax, D.M.J., Duin, R.P.W.: Data domain description using support vectors. In: European
Symposium on Artificial Neural Networks — ESANN, pp. 251-256 (1999)

Taylor, D.W., Corne, D.W.: An investigation of the negative selection algorithm for fault
detection in refrigeration systems. In: Proceedings of the 2nd International Conference on
Artificial Immune Systems (ICARIS), Lecture Notes in Computer Science, vol. 2787, pp.
34-45. Springer-Verlag (2003)

Uspensky, J.V.: Introduction to Mathematical Probability. McGraw-Hill (1937)

(http://www.inf.ethz.ch/~emo/SmallPieces/SAT.ps)

Wierzchon, S.T.: Discriminative power of the receptors activated by k-contiguous bits rule.
Journal of Computer Science and Technology 1(3), 1-13 (2000)

Wierzchon, S.T.: Generating optimal repertoire of antibody strings in an artificial immune
system. In: Intelligent Information Systems, pp. 119-133. Springer Verlag (2000)

27

9 Appendix

I 1
i i
|| i
‘\ i H\E 0y
il
”| " “ |‘ il R |
|
U | I
| | : i
‘ L oy]

I4 16
(m) Coherence between |D|,|H| and |N| of the above depicted fig-
ures 14(a)-14(1).

Fig. 14 Coherence between detector coverage and induced holes for stepwise increasing match-
ing length r. The gray shaded area is covered by the generated detectors, the white area rep-
resents holes. The black points represent normal examples (|S| = 250) which are generated by

a mixture of Gaussian distributions (see Fig. 6(a)).

28

60000 °

50000

40000 -

30000

20000

10000 -

0 - ': L L L T Tmmee
6 8 10 12 14 16

r
(m) Coherence between |D|,|H| and |N]| of the above depicted fig-
ures 15(a)-15(1).

Fig. 15 Visualized experimental results as in Fig. 14, however with |S| = 5000 generated
normal examples.

29

TR R R R R Walelh

I TR

—ne & &
6 8 10 12 14 16

(m) Coherence between |D|,|H| and |N]| of the above depicted fig-
ures 16(a)-16(1).

Fig. 16 Visualized experimental results as in Fig. 14, however the |S| = 250 generated normal
examples are sampled of probability distribution depicted in Fig. 6(b).

30

HHliL)
T

6 8 iO 1‘2
r

(m) Coherence between |D|,|H| and |N]| of the above depicted fig-

ures 17(a)-17(1).

Fig. 17 Visualized experimental results as in Fig. 16, however with |S| = 5000 generated
normal examples.

