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t Negative sele
tion and the asso
iated r-
ontiguous mat
hing rule is a popu-lar immune-inspired method for anomaly dete
tion problems. In re
ent years, however,problems su
h as s
alability and high false positive rate have been empiri
ally no-ti
ed. In this arti
le, negative sele
tion and the asso
iated r-
ontiguous mat
hing ruleare investigated from a pattern 
lassi�
ation perspe
tive. This in
ludes insights in thegeneralization 
apability of negative sele
tion and the 
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omplexity of�nding r-
ontiguous dete
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k-CNF Satis�ability1 Introdu
tionTheoreti
al immunologists proposed the r-
ontiguous mat
hing rule to quantify thebinding strength between antibodies and antigens in immune system models [27℄. Inthese models, two strings of the same length have an r-
ontiguous mat
h, if at least
r 
ontiguous 
hara
ters in both strings are identi
al. In the �eld of arti�
ial immunesystems, the r-
ontiguous mat
hing rule is frequently applied as a mat
hing rule for
hange dete
tion [13℄ or more generally, for anomaly dete
tion problems [10℄. In theseproblem domains, antibodies (
alled dete
tors) and antigens (samples to 
lassify) areabstra
ted as bit strings and the r-
ontiguous mat
hing rule is applied as a 
losenessmeasure to dete
t anomalous antigens. To be more pre
ise, the dete
tors are generatedin a 
ensoring pro
ess 
alled negative sele
tion, su
h that no dete
tor mat
hes withany normal bit string [17℄. The generated dete
tors are then applied as dete
tion units(similar to antibodies in the immune system) to 
lassify bit strings. A bit string b is
lassi�ed as anomalous if an r-
ontiguous mat
h between dete
tor and b o

urs, andotherwise as normal.Thomas StiborTe
hnis
he Universität DarmstadtFa
hberei
h InformatikHo
hs
hulstr. 10, Darmstadt, 64289, GermanyE-mail: stibor�se
.informatik.tu-darmstadt.de



2 In re
ent years, attempts were made [13,42,41,2℄ to generate dete
tors e�
iently,i.e. in polynomial time and with polynomial spa
e o

upation with regard to the dete
-tor mat
hing length r and number of normal bit strings |S |. All proposed algorithmsfor generating dete
tors either have a time or a spa
e 
omplexity whi
h is exponentialin the mat
hing length r, i.e. O(2r) or in the number of normal bit strings |S|, i.e.
O(e|S|).Nevertheless the negative sele
tion method was applied on dete
tion problems,su
h as tool breakage and fault dete
tion [8,38℄, novelty dete
tion in time series [9℄ and(network) intrusion dete
tion [24,32,3,21℄.Esponda et al. andWierz
ho« investigated the 
overage properties of the r-
ontiguousmat
hing rule [14,41,42℄. Empiri
al studies of the 
overage properties are investigatedin [22℄. However, until now there has been limited available theoreti
al work on negativesele
tion from the perspe
tive of a pure pattern 
lassi�
ation problem and 
omputa-tional 
omplexity of �nding r-
ontiguous dete
tors.In this arti
le, negative sele
tion and the asso
iated r-
ontiguous mat
hing rule areinvestigated from a pattern 
lassi�
ation perspe
tive. This in
ludes insights in the gen-eralization 
apability of negative sele
tion and the 
omputational 
omplexity of �nding
r-
ontiguous dete
tors. The arti
le is organized as follows: in se
tion 2 the anomalydete
tion problem is motivated and in se
tion 3 the immunologi
al prin
iple of nega-tive sele
tion is brie�y explained. In se
tions 3.1 - 3.5 the negative sele
tion algorithmfor anomaly dete
tion is presented and generalization 
apabilities are dis
ussed. Ex-periments on the generalization 
apabilities are presented in se
tion 4. Based on themat
hing probability of two randomly drawn bit strings, a random sear
h approa
hto generate dete
tors and the resulting impli
ations are shown in se
tions 5 - 5.4. Theproblem equivalen
e of generating r-
ontiguous dete
tors and satisfying Boolean for-mulas in 
onjun
tive normal form is presented in se
tion 6. In se
tions 6.2, 6.1 6.2, 6.3and 7 the problem equivalen
e is used to explore the 
omputational 
omplexity andthe feasibility of generating dete
tors.2 Anomaly Dete
tionAnomaly dete
tion, also referred to as one-
lass learning or novelty dete
tion is anin-balan
ed two-
lass pattern 
lassi�
ation problem. That is, training data 
onsistseither of examples from a single 
lass C0 of normal examples, or C0 and a stronglyunder-represented se
ond 
lass C1 whi
h 
ontains anomalous examples (see Fig. 1).The test data 
ontains (unseen) samples from both 
lasses. In a probabilisti
 sense,anomaly dete
tion is equivalent to de
iding whether an unknown test sample is pro-du
ed by the underlying probability distribution that 
orresponds to the training setof normal examples. This is based on the assumption that the anomalous data is notgenerated by the sour
e of normal data (see Fig. 2). Popular statisti
al methods foranomaly dete
tion are for instan
e non-parametri
 density estimation te
hniques [4,36℄. The underlying density is approximated with a Parzen window estimator and atest sample is 
lassi�ed as anomalous if the density of the test sample lies below a pre-de�ned threshold. Instead of approximating the full density, one 
an dete
t anomaliesby assuming that anomalies are not 
on
entrated. This leads to the problem of �ndingregions where most of the normal data is 
on
entrated [33℄. Within the framework ofSupport Ve
tor Ma
hines, this problem 
an be formulated in terms of �nding in highdimensional feature spa
e the minimum en
losing hypersphere whi
h 
aptures most of
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Fig. 1 A �typi
al� anomaly dete
tion problem with two given 
lasses (C0 = 
ir
les and C1= triangles). The number of anomalous examples is strongly under-represented (20 exampleswith 
lass label C1) 
ompared to 200 examples of normal data (
lass label C0).
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Fig. 2 The underlying probability distribution of 
lass C0 is depi
ted as a density plot. One
an see that the anomalous data is not generated by the underlying probability distributionof 
lass C0.the normal data [37℄ or, �nding a hyperplane whi
h separates the normal data fromthe origin [30℄.In the next se
tion we brie�y explain the immunologi
al pro
ess of negative sele
-tion and show a

ording to [17℄ how it 
an be abstra
ted and formalized to solve ananomaly dete
tion problem.3 Negative Sele
tionNegative sele
tion is a pro
ess in the immune system to prote
t the body againstdeveloping self-rea
tive lympho
ytes. Lympho
ytes 
arry re
ognition units (
alled an-tibodies) on their surfa
e and are subdivided in two di�erent 
lasses: B and T lympho-
ytes. The immunologi
al pro
ess of negative sele
tion o

urs within the thymus on T



4lympho
ytes only. The thymus forms a highly impermeable barrier to ma
romole
ules
alled the blood-thymi
 barrier. The blood-thymi
 barrier allows thymo
ytes (imma-ture T lympho
ytes) to mature and undergo sele
tion in an environment prote
tedfrom 
onta
t with foreign antigens. During the sele
tion pro
ess, antigen presenting
ells present self-peptide/major histo
ompatability 
omplex (MHC) to the T lympho-
ytes. Those that rea
t strongly (bind with high a�nity) with the self-peptide/MHC
omplexes are eliminated through a 
ontrolled 
ell death 
alled apoptosis. As a result,only those T lympho
ytes remain, whi
h 
an re
ognize foreign antigens and are notself-rea
tive. One 
an say that the negative sele
tion allows the immune system todistinguish between self antigens and non-self antigens by generating T lympho
yteswhi
h 
an re
ognize only non-self antigens.This pro
ess has formed the foundation for a large amount of work in the �eldof arti�
ial immune systems (AIS). In AIS pro
esses and prin
iples of the immunesystem are abstra
ted and applied for solving 
omputational problems. In the followingse
tions 3.1 and 3.2 the immunologi
al negative sele
tion pro
ess is abstra
ted andformalized to solve an anomaly dete
tion problem.3.1 Bit String Mat
hing RuleA bit string mat
hing rule in the 
ontext of AIS is an abstra
t a�nity measure betweenantibodies and antigens.Let U be a universe whi
h 
ontains all 2l distin
t bit strings of length l.De�nition 1 A bit string b ∈ U with b = b1b2 . . . bl and dete
tor d ∈ U with d =

d1d2 . . . dl, mat
h with r-
ontiguous rule, if a position p exists where bi = di for
i = p, . . . , p + r − 1 and p ≤ l − r + 1.Loosely speaking, two bit strings, with the same length, mat
h if at least r 
ontiguousbits are identi
al. The r-
ontiguous mat
hing rule is used primarily in negative sele
-tion [8,9,38,24,32,2℄. Other a�nity measures used in the �eld of AIS are Hamming,Rogers-Tanimoto and r-
hunk mat
hing rules [22,6℄.In the remaining se
tions the expression �dete
tors� will refer to r-
ontiguous de-te
tors. Sets are denoted in 
alligraphi
 letters, e.g. S and |S| denotes the 
ardinality.Throughout the paper, if not otherwise stated, we will assume that S 
ontains pairwisedistin
t bit strings randomly drawn from U .3.2 Negative Sele
tion AlgorithmGiven U and S , in negative sele
tion one has to �nd1 dete
tors su
h that no dete
tormat
hes (see Def. 1) with any bit string from S . Dete
tors whi
h satisfy this propertymat
h with � not ne
essarily all � bit strings from the 
omplementary spa
e U \ S .After a dete
tor set D is generated, (unseen) bit strings δ ⊆ U are mat
hed against thebit strings of D and 
lassi�ed as anomalous if an r-
ontiguous mat
h o

urs, otherwiseas normal bit strings (see Alg. 1 and Fig. 3)1 �To �nd� or �to generate� dete
tors means the same in this arti
le.



5Algorithm 1: Negative Sele
tion Algorithm.input : S ⊆ U ≡ normal 
lass training examples, r ∈ N ≡ mat
hing lengthbegin1 Generate a set D of dete
tors, su
h that ea
h fails to mat
h any element in S.2 Monitor data δ ⊆ U by 
ontinually mat
hing the dete
tors in D against δ. If any3 dete
tor mat
hes with δ, 
lassify δ as an anomaly, otherwise as normal.end4
r-
ontiguousmat
hyes no
andidatedete
tor d

D := D ∪ {d}
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Fig. 3 Prin
iple of negative sele
tion. Dete
tors are generated in a 
ensoring pro
ess 
allednegative sele
tion su
h that no dete
tor mat
hes with any bit strings of S. Bit strings δ ⊆ Uare then 
lassi�ed with the generated dete
tors as anomalous if an r-
ontiguous mat
h o

urs,otherwise as normal bit strings.3.3 Partition of Universe U and Undete
table Bit StringsThrough the appli
ation of the r-
ontiguous mat
hing rule in negative sele
tion, theuniverse U is partitioned in distin
t subsets. Assume that |S| < ν, that is, S 
ontainsless than some threshold ν of bit strings and let D be the set of all dete
tors that 
anbe generated. In this 
ase the following 
oheren
e holds:
U = N ∪ S , S ∩ N = ∅ and D ⊆ N .The dete
tor set D is a subset of N , where N is the set of dete
table, i.e. 
overed bitstrings (see Fig. 4(a)). However, if |S| ≥ ν then an additional set is indu
ed, namelythe set H of undete
table bit strings 
alled holes [13℄. H 
ontains bit strings whi
h arenot members of S and N (see Fig. 4(b)) and hen
e 
annot be dete
ted by any dete
tor.



6
PSfrag repla
ements N

S

U

D

(a) The universe Uis partitioned in set
S and N only. Thedete
tors of D ⊆ N
over all bit stringsof N .

PSfrag repla
ements
N

S

H

D

(b) S 
ontainsmore then ν bitstrings and thisindu
es the set Hof undete
table bitstrings.
PSfrag repla
ements S

H

(
) S 
ontains su
h alarge number of dis-tin
t bit strings andtherefore U is onlypartitioned in S and
H, i.e. no dete
torsexist and hen
e, allbit strings of U areundete
table.Fig. 4 Coheren
es of 
ardinalities of sets S,N ,H and D.More spe
i�
ally, the following 
oheren
e holds:

U = N ∪ S ∪ H where
N ∩ S = ∅, N ∩H = ∅, H∩ S = ∅ and

D ⊆ N .If |S| ≫ ν, then the universe U will 
onsist only of the sets S and H (see Fig. 4(
)),that is no dete
tors 
an be generated.Example 1 Let l = 4, r = 2 and S = {s1, s2, s3}, where s1 = {0110}, s2 = {1010} and
s3 = {1100}. One 
an easily verify that only one dete
tor 
an be generated, namely
{0001}. That implies that all bit strings of set2 N = {00∗∗, ∗00∗,∗∗ 01} are dete
table.Conversely, all bit strings from U\N = S∪H = {s1, s2, s3, 0100, 0111, 1011, 1110, 1111}are not dete
table.By using the same parameters l, r and adding one additional normal bit string
s4 = {0011} to S , no dete
tors 
an be generated, that is D = ∅ and hen
e N = ∅.3.4 Constru
ting Holes with the Crossover ClosureHoles 
an be 
onstru
ted by the 
rossover 
losure method proposed in [15℄. The ideabehind the 
rossover 
losure is presented in �gure 5. Ea
h bit string s ∈ S is subdividedin l − r + 1 substrings3 s[1, . . . , r], s[2, . . . , r + 1], . . . , s[l − r + 1, . . . , l] and 
onne
tedwith a dire
t edge, if the last r − 1 bits of s[i, . . . , r + i − 1] are mat
hed with the�rst bits of s[i + 1, . . . , r + i], for i = 1, . . . , l − r and all s ∈ S . Substrings whi
hare 
onne
ted with a dire
t edge are merged over r − 1 equal bits to one bit stringof length l. By applying the 
onstru
tion method on bit strings of S , only holes 
anbe 
onstru
ted whi
h are �
rossed� 
ombinations of bit strings of S . To 
onstru
t all2 The symbol * represents either a 1 or 0.3 s[1, . . . , l] denotes 
hara
ters of s at positions 1 . . . l.
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= {1110, 0010}
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an be 
onstru
ted by thealready found hole h1 = 1110 and n1 = 0011.
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= {0011, 1011}

= {0010, 1010}

= {1001, 0001}

= {n1, h4}

= {n2, s2}

= {n3, n4}(
) Hole h4 = 1011 
an be 
onstru
ted by n1 =
0011, n2 = 0010 and n3 = 1001.Fig. 5 Holes 
onstru
ted by means of the 
rossover 
loser method for bit strings from N ,Sand H.

existing holes, one has to in
lude in the 
rossover 
losure method also bit stringsof N and already 
onstru
ted holes of H. To 
larify this fa
t and to visualize the
rossover 
losure method, 
onsider again example 1 with parameters l = 4, r = 2 and
S = {s1, s2, s3}. In �gure 5(a) one 
an see, that holes h1 = 1110 and h2 = 0100 
anbe 
onstru
ted by s1 = 0110, s2 = 1010 and s3 = 1100. Moreover as illustrated in�gure 5(b), the additional hole h3 = 1111 
an be 
onstru
ted by bit string n1 = 0011and hole h1 = 1110. Hole h4 = 1011 
an be 
onstru
ted by n1, n2 and n3 (see Fig. 5(
)).The remaining hole (h5 = 0111) 
an be 
onstru
ted by applying the 
rossover 
losuremethod on bit strings s1 and h3. This example illustrates that holes are not onlyindu
ed by bit strings of S , but also by bit strings of U \ S .



83.5 Holes as GeneralizationHoles are undete
table bit strings and hen
e have to represent unseen bit strings of Sto generalize beyond the training set. The number of holes is determined by |S| andmat
hing length r. A dete
tor set whi
h generalizes well, ensures that seen and unseenbit strings of S are not re
ognized by any dete
tor, whereas all other bit strings arere
ognized by dete
tors and 
lassi�ed as anomalous. A dete
tor set whi
h 
overs all bitstrings of N and all unseen bit strings of S over�ts, be
ause no holes (no generalization)exists. In 
ontrast, the opposite result 
an o

ur, that is, a large number of anomalousbit strings are members of H and hen
e the dete
tor set 
onsequently under�ts. Tosummarize, in order to obtain good generalization results, it is 
ru
ial to �nd properparameter 
ombinations of |S| and r, su
h that the generated dete
tor set generalizeswell. This also in
ludes the topologi
al regions of holes, that is, holes must o

ur inregions where most normal bit strings are 
on
entrated.4 Experiments on Covered Regions and HolesIn order to analyze the generalization 
apabilities with regard to parameters |S| and r,two arti�
ially generated data sets are 
reated. Both data sets 
onsists of only normalexamples whi
h where generated by an underlying mixture of Gaussian distributionswith di�erent mean ve
tors and 
ovarian
e matri
es. The density plots of both prob-ability distributions and generated normal examples are depi
ted in �gure 6. As thenegative sele
tion operates on bit strings, and examples from data sets 1 and 2 aretwo-dimensional real numbers, both data sets are min-max normalization to [0, 1]2 anddis
retized to binary strings of length l = 16

b1, b2, . . . , b8| {z }
bx

, b9, b10, . . . , b16| {z }
by

,where the �rst 8 bits en
ode the integer x-value ix := ⌈255 ·x+0.5⌉ and the last 8 bitsthe integer y-value iy := ⌈255 · y + 0.5⌉, i.e.
[0, 1]2 → (ix, iy) ∈ (1, . . . , 256) × (1, . . . , 256) → (bx, by) ∈ {0, 1}8 × {0, 1}8.This mapping is proposed in [22℄, and also utilized in [34℄. It satis�es a straightforwardvisualization of real-valued en
oded points in negative sele
tion.In the appendix (see Figs. 14, 15, 16, 17) the experimental results on the 
overedregions with dete
tors and holes are visualized for di�erent parameter 
ombinations of

|S| and r. One 
an see that the number of holes is determined by the 
ardinality of Sand the mat
hing length r. Given approximately 250 normal bit strings, no dete
tors
an be generated for mat
hing lengths r = {5, 6}, whereas for approximately 5000normal bit strings no dete
tors 
an be generated for r = {5, 6, 7} (resp. r = {5, 6, 7, 8}for data set 2). By in
reasing stepwise the value of r to the maximum value of r =

16, one 
an observe that the 
ardinality of N , that is, the set whi
h is 
overed withdete
tors in
reases and in 
ontrast |H| de
reases. Moreover, one 
an also observe thatfor approximately 250 normal bit strings the 
ardinality variation of N and H forstepwise in
reasing the value of r, rapidly o

urs, that is, for r ≤ 6 no regions are
overed by dete
tors, whereas for r ≥ 9 almost all regions are 
overed. This sharp
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(b)Fig. 6 Normal examples of data set 1 (left �gure) and 2 (right �gure) are sampled from a mix-ture of Gaussian distributions whi
h are depi
ted as density plots. Normal data is 
on
entratedwithin the high density regions and hen
e holes must o

ur within these regions.phase transition shift of the 
ardinalities is more 
losely investigated in se
tion 5.2and 6.2.Furthermore, one 
an additionally observe that holes never o

ur in dense normalregions only, or to say it the other way around, the generated dete
tors are not 
apableof 
overing only anomalous regions and hen
e the dete
tor set does not generalizewell. This observation is obviously biased by the r-
ontiguous mat
hing rule. To bemore pre
ise, the indu
tive bias of negative sele
tion and the asso
iated r-
ontiguousmat
hing rule is the assumption that bit string b belongs to the normal 
lass, if b and thegiven normal bit strings of S have at least r bits in 
ommon. Comparing a 
onse
utivenumber of bits as a 
loseness measure seems not to be an appropriate approa
h, be
ause



10the semanti
 representation of the underlying data 
an not be properly 
aptured, or inother words, the indu
tive bias 
annot be learned. The r-
ontiguous mat
hing rule andthree additional rules (Hamming, Rogers-Tanimoto and r-
hunk) are tested in a similarexperiment [22℄ and reveals 
omparable results, even if the representation is en
odedin Gray 
odes. The 
ru
ial fa
t of having a proper indu
tive bias is well known in thema
hine learning 
ommunity [25℄, however in the 
ontext of pattern 
lassi�
ation andnegative sele
tion, it was only dis
ussed in [19℄.5 Generating Dete
tors RandomlyA straightforward approa
h to generate dete
tors is to randomly sample a bit string dfrom U and to mat
h d against all bit strings in S . When no r-
ontiguous mat
h o

urs,
d is added to the dete
tor set D [17℄. This random sampling is repeated until a 
ertainnumber of dete
tors is found (see algorithm 2). It is obvious that this straightforwardrandom sear
h is not an e�
ient sear
h te
hnique.However, a thorough probabilisti
 analysis of algorithm 2 reveals valuable insights,whether dete
tors 
an or 
an not be generated and how U is partitioned with respe
tto parameters |S|, l and r.Algorithm 2: Random sear
h for dete
tors in negative sele
tioninput : l, r, t ∈ N where 1 ≤ r ≤ l and S ⊂ Uoutput: Set D ⊂ U of r-
ontiguous dete
torsbegin1

D := ∅2 while |D| < t do3 Sample randomly a bit string d ∈ U4 if d does not mat
h with any bit string of S then5
D := D ∪ {d}6 end75.1 Probability of Mat
hing in Random Dete
tor GenerationThe probability that two randomly drawn bit strings from U are not mat
hing with the

r-
ontiguous rule 
an be determined with approa
hes from probability theory, namelyre
urrent events and renewal theory [16℄. In Feller's textbook on probability theory anequivalent4 problem is formulated as follows:�A sequen
e of n letters S and F 
ontains as many S-runs of length r as thereare non-overlapping uninterrupted blo
ks 
ontaining exa
tly r letters S ea
h�.4 The Link between re
urrent events, renewal theory and the r-
ontiguous mat
hing proba-bility was dis
overed originally in [27℄ and redis
overed in [28℄. Per
us et al. presented in [27℄the probability approximation (2) whi
h is only valid for r ≥ l/2. However, they also 
ited Us-pensky's textbook (see pp. 77 in [39℄), where the approximation of the r-
ontiguous mat
hingprobability for 1 ≤ r ≤ l is presented.



11Given a Bernoulli trial with out
omes S (su

ess) and F (failure), the probability ofno su

ess running of length r in l trials is a

ording to Feller
P =

1 − px

(r + 1 − rx)q
·

1

xl+1
(1)where

p = q =
1

2
and x = 1 + qpr + (r + 1)(qpr)2 + . . .A simpler approximation � however only valid for r ≥ l/2 (see [41,35℄) � is providedin [27℄:

bP = 1 − 2−r [(l − r)/2 + 1] . (2)From (1) one 
an straightforwardly 
on
lude that the probability of �nding t dete
torswhen given l, r and |S| results in:Prob[�nd t dete
tors] = t−1 · P |S|. (3)Moreover, from (3) one 
an 
on
lude how often on average step 4 in algorithm (1) isexe
uted when given t, or in other words how many bit strings one has to sample before�nding bt dete
tors.
bt =

1

t−1 · P |S|
. (4)Result (4) is equivalent to an earlier result provided in [17℄, when P is repla
ed by bP .
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hanges from 0 to 1.Fig. 7 Coheren
e between the probability of �nding a dete
tor randomly and the parameters
l, r and |S|. There exists a sharp transition boundary where the probability rapidly 
hangesfrom 0 to 1.



125.2 Probability Transition in r-
ontiguous Mat
hingKnowing the probability P enables us to investigate the 
ombinations of parameters
|S|, l and r where, with high probability dete
tors 
an be generated or with high prob-ability 
an not be generated. The graphs in �gure 7 show the probability for �nding adete
tor for �xed l and variable r and |S| a

ording to term (3). One 
an see, that thelarger the 
ardinality of S , the larger the interval for r where the resulting probabilityis nearly 0 to �nd a dete
tor. On the other hand, the smaller the 
ardinality of S , thelarger the interval for r where the resulting probability is nearly 1 to �nd a dete
tor.In �gure 7(b) the graph for |S| = 1000 is highlighted. One 
an see in detail that threedi�erent intervals (i1, i2, i3) exist. One 
an either �nd with high probability a dete
torif r falls in interval i1, or �nd with high probability no dete
tor if r falls in interval i3.Moreover, there exists a third interval i2 where the probability rapidly 
hanges from 0to 1. For the sake of 
onformity with the subsequent se
tions, we denote the interval
i2 as phase transition region. We will later see that �nding dete
tors in this region,whi
h is 
hara
terized by 
ertain 
ombinations of parameters |S|, l, r is hardest fromthe perspe
tive of 
omputational 
omplexity.To summarize this se
tion, if parameters |S|, l and r are 
hosen su
h that term (3)results in a value very 
lose to 0, then in the worst 
ase no dete
tors 
an be generated,never mind whi
h algorithms, i.e. sear
h te
hniques are applied to generate dete
tors,be
ause there exist no dete
tors. On the other hand, if term (3) is 
lose to 1, then alarge number of dete
tors exist.5.3 Coheren
e of Mat
hing Length r, Self Set S and Random Dete
tor Sear
hIn the AIS 
ommunity there seems to exist some 
onfusion regarding the time 
omplex-ity of algorithm (1). [17℄ argued that generating dete
tors when applying the randomsear
h approa
h 
an be performed linearly in |S|. Their argument is based on the obser-vation that bt in (4) is minimized by 
hoosing 1− bP ≈ 1/|S|. In other words, the numberof bit strings one has to sample before �nding t dete
tors is linear proportionally to |S|,when using algorithm (1). This observation implies that the mat
hing length r purelydepends on the 
ardinality of S when l is �xed. To be more pre
ise, suppose r ≥ l/2,then

2−r [(l − r)/2 + 1] ≈ |S|−1 ⇐⇒
8 · 2l

|S|
≈ (l − r + 2) · 2l−r+2 (5)

⇐⇒
8 ln(2)2l

|S|
≈ (l − r + 2) ln(2) e(l−r+2) ln(2) (6)

⇐⇒ r ≈ l + 2 −
W (8 ln(2)2l/|S|)

ln(2)
(7)where W (x) is the Lambert W -fun
tion whi
h 
an be expressed as the series expansion

W (x) =
∞X

k=1

(−1)k−1kk−2

(k − 1)!
xk (8)and provides a solution to the problem Y = XeX ⇐⇒ X = W (Y ). Pra
ti
ally speak-ing, on
e |S| and l are �xed, the mat
hing length r is 
hosen a

ording to (7) and this
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e of mat
hing length r and growing 
ardinality of S in Eq. 7 for l = 16.
onsequently implies that r grows exponentially in |S| and �qui
kly� approa
hes to l(see Fig. 8), that is
lim

|S|→2l
l + 2 −

W (8 ln(2)2l/|S|)

ln(2)
= l + 2 −

W (8 ln(2))

ln(2)| {z }
2

= l. (9)In terms of the indu
tive bias of the r-
ontiguous mat
hing rule, the dependen
ebetween r and |S| in (7) is problemati
 be
ause the value of r is inextri
ably linked tothe underlying data being analyzed. To be more pre
ise, the value of r must 
apturethe underlying features of the data � Freitas and Timmis termed this, the positionalbias [19℄.A

ording to assumption 1 − bP ≈ 1/|S| and term (7), the value of r is howeverdetermined independently of the underlying data � the value of r depends only on the
ardinality of S . Let us assume that S 
ontains 1000 bit strings sampled from somedistribution P , and the value of r is appropriately determined, that is, it 
apturessemanti
ally the features of the underlying data. Let us now assume that S 
ontains
2000 bit strings sampled from P , it is 
lear that the value of r has to be equal to thevalue of r whi
h is determined previously for 1000 bit strings. A

ording to assumption
1− bP ≈ 1/|S| and term (7) however, the value of r depends only on the 
ardinality of
S rather than the semanti
s of the underlying data.5.4 Average Number of Dete
tors and HolesBy applying the results from the previous se
tion 5.1, one 
an approximate the averagenumber of dete
tors that 
an be generated and the number of resulting holes.Knowing this 
oheren
e between term (3) and the universe 
omposition, the averagenumber of dete
tors that 
an be generated results in

E[|D|] = 2l · P |S|. (10)As the universe is 
omposed of U = S ∪ N ∪H, the number of holes results in
|H| = |U| − |N | − |S| (11)



14where
E[|N |] = 2l − 2l · PE[|D|]

| {z }Number of bit stringsnot dete
ted by E[|D|]dete
tors (12)
and hen
e the average number of holes results in

E[|H|] = 2l · PE[|D|] − |S|. (13)In �gure 9, the term (10) and (13) is plotted for l = 12, r = 7 and |S| := {1, 2, . . . , 2l}.Additionally, for ea
h 
ardinality value of S (randomly drawn from U) the resultingnumber of dete
tors that 
an be generated and resulting holes (bla
k and gray 
ir
les)is empiri
ally determined and depi
ted. One 
an see that term (10) and (13) are rea-sonable estimations of the number of dete
tors that 
an be generated as well as thenumber of resulting holes. Furthermore, one 
an see the exponential de
rease of thenumber of dete
tors and as a 
ountermove the in
rease of holes for |S| := {1, 2, . . . , 2l}.If the maximum number of possible holes is rea
hed, then |H| de
reases linearly to thevalue of 0 be
ause the relation |U| = |S| + |N | + |H| must hold.6 The Link between r-
ontiguous Dete
tors and k-CNF Satis�abilityIn this se
tion we outline the Boolean satis�ability problem and subsequently showhow dete
tors are related to that problem.The Boolean satis�ability problem (short SAT) is a de
ision problem and 
an beformulated in terms of the language SAT [7℄. An instan
e of SAT is a Boolean formula
φ 
omposed of ∧ (AND), ∨ (OR), ·̄ (NOT), → (impli
ations), ↔ (if and only if), vari-ables x1, x2, . . ., and parentheses. In SAT problems, one has to de
ide if there is someassignment of true and false values to the variables that will make the Boolean for-mula φ true. In the following se
tions, we will fo
us on Boolean formulas in 
onjun
tivenormal form.A Boolean formula is in 
onjun
tive normal form (CNF), if it is expressed as anAND-
ombination of 
lauses and ea
h 
lause is expressed as an OR-
ombination of oneor more literals. A literal is an o

urren
e of a Boolean variable x or its negation x.Example 2

(

literalz}|{
x1 ∨ x1 ∨ x2)| {z }
lause ∧ (x3 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)A Boolean formula is in k-CNF, if ea
h 
lause has exa
tly k distin
t literals. Exam-ple (2) shows a 3-CNF Boolean formula. A k-CNF Boolean formula is satis�able ifthere exists a set of values (0 ≡ false and 1 ≡ true) for the literals that 
ause it toevaluate to 1, i.e. the logi
al value true. A possible assignment set of Boolean valuesthat evaluate in example (2) to true is, x1 = 1, x2 = 1, x3 = 0, x4 = 0 (or expressed
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Fig. 9 Coheren
e between the number of dete
tors that 
an be generated and the resultingnumber of holes for l = 12, r = 7 and |S| := {1, 2, . . . , 2l} (randomly drawn from U). The bla
kand gray 
ir
les are empiri
ally determined values of |D| and |H|, the bla
k and gray 
oloredgraph denotes the analyti
ally determined values a

ording to (10) and (13).as a bit-string 1100). In k-CNF-SAT, we are asked whether a given Boolean formulain k-CNF is satis�able. It is known that for k > 2, k-CNF-SAT is NP-
omplete [29℄,i.e. this problem is veri�able in polynomial time, but no-one has yet dis
overed analgorithm for solving all k-CNF-SAT instan
es in polynomial time.We will now 
onsider a spe
ial subset of Boolean formulas in k-CNF whi
h arede�ned as follows:De�nition 2 A k-CNF Boolean formula φrcb is in l-k-CNF, when φrcb has (l− k +1)
lauses C1, C2, . . . , Cl−k+1 for 1 ≤ k ≤ l and k − 1 equal literals in Ci, Ci+1 for
i = 1, 2, . . . , l − k

C1 = (x1 ∨ x2 ∨ . . . ∨ xk)

C2 = (x2 ∨ x3 ∨ . . . ∨ xk+1)...
Cl−k+1 = (xl−k+1 ∨ xl−k+2 ∨ . . . ∨ xl).Re
all dete
tors are bit strings of U whi
h do not mat
h with any bit strings of length

l from S . We subsequently show a transformation of bit strings of S into l-k-CNF



16Boolean formulas.Let b ∈ {0, 1} and L(b) a mapping de�ned as:
L(b) →


x if b = 0

x otherwisewhere x, x are literals.Let k, l ∈ N, where k ≤ l and s ∈ U , where s[i] denotes the bit at position i of bit-string
s, and C(s, k) a l-k-CNF mapping de�ned as:

C(s, k) → (L(s[1]) ∨ L(s[2]) ∨ . . . ∨ L(s[k])) ∧

(L(s[2]) ∨ L(s[3]) ∨ . . . ∨ L(s[k + 1])) ∧...
(L(s[l − k + 1]) ∨ . . . ∨ L(s[l])) .For the sake of 
larity we denote a Boolean formula in l-k-CNF whi
h is obtained by

C(s, k) for s ∈ S as φrcb. Moreover we denote a Boolean formula V|S|
i=1 φi

rcb whi
h is ob-tained by C(s1, k) ∧ C(s2, k) ∧ . . . ∧ C(s|S|, k) for |S| ≥ 1 and all si ∈ S , i = 1, . . . , |S|as bφrcb. If |S| = 1, then φrcb ≡ bφrcb.Proposition 1 Given U, S and the set D whi
h 
ontains all dete
tors that 
an begenerated. The Boolean formula bφrcb whi
h is obtained by C(s, r) for all s ∈ S issatis�able only with the assignment set D.Proof Transforming s1 ∈ S with C(s1, k) in a l-k-CNF, where k := r, results due to
L(·) in a Boolean formula whi
h is only satis�able with bit strings from U \ F1, wherethe symbol ∗ represents either a 1 or 0 and

F1 = {s1[1, . . . , r] ∗ ∗ . . . ∗| {z }
l−r

,

∗ s1[2, . . . , r + 1] ∗ ∗ . . . ∗| {z }
l−r−1

,...
∗ ∗ . . . ∗| {z }

l−r

s1[l − r + 1, . . . , l]}.Transforming the remaining si = s2, s3, . . . , s|S| with C(si, k) and 
onstru
ting bφrcb =

φ1
rcb ∧ φ2

rcb ∧ . . . ∧ φ
|S|
rcb

results in a Boolean formula whi
h is only satis�able withbit strings from U \ (F1 ∪ F2 ∪ . . . ∪ F|S|). Ea
h dete
tor of D has no mat
hing bitsat si[1, . . . , r], si[2, . . . , r + 1], . . . , si[l − r + 1, . . . , l] for i = 1, 2, . . . , |S|. Hen
e, bφrcb isonly satis�able with assignment set U \ (F1 ∪ F2 ∪ . . . ∪ F|S|) = D.



17Example 3 Let l = 5, r = 3 and S = {s1, s2, s3, s4, s5, s6} with the following bitstrings:
s1 = {01011}, s2 = {01100}, s3 = {01110},

s4 = {10010}, s5 = {10100}, s6 = {11100}.Generating all possible dete
tors, one obtains the dete
tor set D = {d1, d2, d3, d4, d5}:
d1 = {00000}, d2 = {00001}, d3 = {11000},

d4 = {11001}, d5 = {00111}.Transforming all s ∈ S with C(s, r), one obtains:
φ1

rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ2
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ3
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ4
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ5
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ6
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

bφrcb = φ1
rcb ∧ φ2

rcb ∧ φ3
rcb ∧ φ4

rcb ∧ φ5
rcb ∧ φ6

rcb.The Boolean formula bφrcb is satis�ed only with the assignmentset {00000, 00001, 11000, 11001, 00111} = {d1, d2, d3, d4, d5} = D.6.1 Unsatis�able CNF Formula and No Generable Dete
torsIn this se
tion, we use our obtained transformation result (Proposition 1) to demon-strate involving properties on the number of dete
tors that 
an be generated. An ex-ample is the question: Given S and r, is it possible to generate any dete
tors at all?One approa
h to answer this question is to apply a variant of the Lovász Lo
alLemma [40℄. More spe
i�
ally we de�ne a

ording to [40℄, vbl(C) as the set of variablesthat o

ur in 
lause C, i.e. {x ∈ V |x ∈ C or x ∈ C}, where V is a set of Booleanvariables. Moreover, as de�ned in [40℄, the neighborhood of C in φrcb is the set of
lauses distin
t from C in φrcb that depend on C, or more formally:
Γφrcb

(C) := {C′ ∈ φrcb |C
′ 6= C and

vbl(C) ∩ vbl(C′) 6= ∅}
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φ1

rcb = (x1∨x2∨...∨xr)∧(x2∨x3∨...∨xr+1)∧...∧(xi∨xi+1∨...∨xi+r+1)∧...∧(xl−r+1∨xl−r+2∨...∨xl)

φ2
rcb = (x1∨x2∨...∨xr)∧(x2∨x3∨...∨xr+1)∧...∧(xi∨xi+1∨...∨xi+r+1)∧...∧(xl−r+1∨xl−r+2∨...∨xl)... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ
j

rcb
= (x1∨x2∨...∨xr)∧(x2∨x3∨...∨xr+1)∧...∧

C
j
iz }| {

(xi∨xi+1∨...∨xi+r+1)
| {z }
|Γ

φ
j
rcb

(C
j
i
)|= 2(r−1)

∧...∧(xl−r+1∨xl−r+2∨...∨xl)... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ
|S|
rcb

= (x1∨x2∨...∨xr)∧(x2∨x3∨...∨xr+1)∧...∧(xi∨xi+1∨...∨xi+r+1)∧...∧(xl−r+1∨xl−r+2∨...∨xl)Fig. 10 Cj
i has at most 2 (r − 1) many neighborhood 
lauses in φj

rcb
(r − 1 to left and r − 1to right) and at most (2 (r − 1) + 1) · (|S| − 1) many neighborhood 
lauses in all remainingBoolean formulas φ1

rcb
, φ2

rcb
, . . . , φj−1

rcb
, φj+1

rcb
, . . . , φ

|S|
rcb

.Proposition 2 Let S be a set of bit strings of length l, where all s ∈ S are 
onsistingof pairwise distin
t substrings s[1, . . . , r], s[2, . . . , r +1], . . . , s[l− r +1, . . . , l]. Dete
tors
an be generated, if
|S| <

2r e−1 + 1

2r − 1
.Proof For ea
h s ∈ S 
onstru
t a Boolean formula φi
rcb in l-k-CNF by C(s, r). Constru
ta related k-CNF Boolean formula bφrcb = φ1

rcb ∧ φ2
rcb ∧ . . . ∧ φ

|S|
rcb

. Let Cj
i be the i-th
lause in φj

rcb
, 1 ≤ j ≤ |S|. Cj

i has at most 2 (r−1) many neighborhood 
lauses in φj
rcband at most (2 (r−1)+1)·(|S|−1) many neighborhood 
lauses in all remaining Booleanformulas φ1

rcb, φ
2
rcb, . . . , φ

j−1
rcb

, φj+1
rcb

, . . . , φ
|S|
rcb

. In total this results in |S| · (2r − 1) − 1dependent 
lauses (see Fig. 10).A variant of the Lovász Lo
al Lemma [40℄ implies that if |ΓF (C)| ≤ 2k−2, k ∈ Nfor all 
lauses C in a k-CNF formula F , then F is satis�able. Applying the variant ofthe Lovász Lo
al Lemma results in
|S| · (2r − 1) − 1 ≤ 2r−2 < 2r/e.A more 
omputational oriented approa
h to answer the question: Is it possibleto generate any dete
tors at all? Is to apply the Davis-Logemann-Loveland (DLL5)algorithm. The DLL algorithm [11℄ is based on the elimination rules proposed in [12℄and terminates either with result unsatis�able (empty 
lause) or satis�able (empty φ).Moreover the DLL algorithm 
an be used to quantify the 
omputational �hardness� of�nding dete
tors by 
ounting the number of ba
ktra
king attempts when evaluatingthe k-CNF input instan
e.To be more pre
ise, the algorithm is a depth-�rst sear
h te
hnique and uses re
ur-sive ba
ktra
king for guiding the exploration. The algorithm 
onstru
ts a de
ision tree,where assignments of the variables 
oin
ide with paths from the root to the leafs. If apath leads to an unsatis�able result, then the algorithm ba
ks up to a di�erent bran
h.This re
ursive sear
h is reiterated until it terminates with a satis�able or unsatis�ableresult. In the worst 
ase the whole de
ision tree has to be inspe
ted, i.e. it will take5 The DLL algorithm is sometimes also 
alled DPL or DPLL algorithm [18,26℄.



19an exponential number of evaluations � similar to an exhaustive sear
h. However onaverage the DLL algorithm is mu
h faster be
ause it 
an prune whole bran
hes fromthe de
ision tree without exploring the leaves.Given a Boolean formula φ in CNF, a literal l in φ and the redu
tion fun
tion R(φ, l)that outputs the residual formula of φ by:� removing all the 
lauses that 
ontain l,� deleting l from all the 
lauses that 
ontain l,� removing both l and l from the list of literals.A 
lause that 
ontains one literal is 
alled unit 
lause, and a literal l is 
alled monotone,if l appears in no 
lause of φ. In lines 2-7 the redu
tion fun
tion is applied whenever aAlgorithm 3: Davis-Logemann-Loveland algorithm (DLL(·))input : φ (Boolean formula in CNF)output: SATISFIABLE or UNSATISFIABLEbegin1 forall unit 
lauses {l} in φ do2
φ← R(φ, l)3 if φ in
ludes empty 
lause then4 return UNSATISFIABLE5 forall monotone literals l in φ do6
φ← R(φ, l)7 if φ is empty then8 return SATISFIABLE9 
hoose a literal l in φ10 if DLL(R(φ, l)) = SATISFIABLE) then11 return SATISFIABLE12 if DLL(R(φ, l)) = SATISFIABLE) then13 return SATISFIABLE14 return UNSATISFIABLE15 end16unit 
lause or a monotone literal is found. The subsequent re
ursive 
all is performed inlines 11, 13 respe
tively. �Easy� input instan
es imply that the DLL algorithm requiresfew ba
ktra
king attempts be
ause 
lauses and literals 
an be e�
iently eliminatedby means of R(φ, l) without exe
uting many subsequent re
ursive 
alls. On the otherhand, �hard� instan
es imply that many re
ursive 
alls or ba
ktra
king attempts arerequired. In the next se
tion, the terms �easy� and �hard� are 
lari�ed. More spe
i�
ally,it will be shown that parameters |S|, l and r spe
ify the ratio of the number of 
lauses tovariables of the bφrcb instan
es and therefore 
hara
terize the 
omputational 
omplexityof the DLL algorithm.6.2 Phase Transition in k-CNF Satis�abilityThe k-CNF satis�ability problem is NP-
omplete for k > 2, however, this fa
t does notimply that all instan
es of the k-CNF satis�ability problem are intra
table to solve. In



20point of fa
t, there exists many problem instan
es whi
h are �easy� to solve, i.e. one
an e�
iently de
ide whether the instan
e is satis�able or is unsatis�able. On the otherhand there also exist problem instan
es whi
h are �hard�, i.e. one 
an not e�
ientlyde
ide whether the instan
e is satis�able or is not satis�able. The 
omputational �hard-ness� of �nding assignments sets for randomly generated instan
es is 
hara
terized bythe ratio [20℄
rk =

number of 
lausesnumber of variables . (14)If the Boolean formula φ has many variables and few 
lauses, then φ is under-
onstrainedand as a result, there exist many assignment sets. The DLL algorithm requires forunder-
onstrained problem instan
es few ba
ktra
king attempts and therefore �easily�dedu
es the satis�ability. On the other hand, if the ratio of the number of 
lauses to vari-ables is large, then φ is over-
onstrained and almost has no satisfying assignment set.Su
h over-
onstrained instan
es are likewise �easily� dedu
ible for the DLL algorithm.However, there also exists a transition from under-
onstrained to the over-
onstrainedregion. In su
h a phase transition region, the probability of the instan
es being sat-is�able equals 0.5 and thus one has the largest un
ertainty whether the instan
es aresatis�able or are unsatis�able.For the 3-CNF satis�ability problem, the ratio (phase transition threshold) is ex-perimentally approximated by 4.24 [18,31℄. That means, when r3 is 
lose6 to 4.24,the DLL algorithm has to ba
ktra
k most frequently to determine the �nal result. Ifthe Boolean formula is under-
onstrained (r3 < 4.24) or over-
onstrained (r3 > 4.24),then the algorithm prunes whole bran
hes from the de
ision tree, without exploringthe leaves and terminates after few re
ursive 
alls.6.3 Average Number of Distin
t ClausesGiven S , l and r, the 
onstru
ted Boolean formula bφrcb 
ontains in total (l− r +1) · |S|
lauses. However, bφrcb does not ne
essarily 
ontain (l − r + 1) · |S| pairwise distin
t
lauses. Two 
lauses are distin
t from ea
h other, if they di�er in at least one literal.In point of fa
t, if l ≫ r, then a large number of equal 
lauses o

ur in bφrcb. Equal
lauses in bφrcb however, do not bias the 
omputational 
omplexity. To quantify the
omputational 
omplexity by means of the DLL algorithm, one has to determine theaverage number of pairwise distin
t 
lauses.Example 4 Let S := {0101, 1101} and r = 3, hen
e bφrcb results in
(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).Example 4 shows that the se
ond and the fourth 
lause are equal, be
ause the lastthree bits of 0101 and 1101 are equal.Proposition 3 Given bit string length l, mat
hing length r and S whi
h 
ontains pair-wise distin
t bit strings s1, s2, . . . , s|S| randomly drawn from U. The average numberof pairwise distin
t 
lauses is

E[|bφrcb|] = 2r (l − r + 1) −

„
1 −

1

(l − r + 1) 2r

«|S|(l−r+1)

(l − r + 1) 2r . (15)6 It is still an open problem to prove where the exa
t phase transition threshold is lo
ated.Latest theoreti
al work [1℄ shows that the threshold rk lies within the boundary 2.68 < rk <
4.51 for k = 3.



21Proof Constru
t a lookup table T whi
h 
ontains all 2r · (l − r + 1) 
lauses with label
T and is of the form

clause label

(x1 ∨ x2 ∨ . . . ∨ xr−1 ∨ xr) T

(x2 ∨ x3 ∨ . . . ∨ xr ∨ xr+1) T... ...
(xl−r+1 ∨ xl−r+2 ∨ . . . ∨ xl−1 ∨ xl) T

(x1 ∨ x2 ∨ . . . ∨ xr−1 ∨ xr) T

(x2 ∨ x3 ∨ . . . ∨ xr ∨ ∨ xr+1) T... ...
(xl−r+1 ∨ xl−r+2 ∨ . . . ∨ xl−1 ∨ xl) T... ...
(x1 ∨ x2 ∨ . . . ∨ xr−1 ∨ xr) T

(x2 ∨ x3 ∨ . . . ∨ xr ∨ xr+1) T... ...
(xl−r+1 ∨ xl−r+2 ∨ . . . ∨ xl−1 ∨ xl) TTransform S into the 
orresponding Boolean formula bφrcb and set the label to Fwhenever a 
lause in T is member of bφrcb. As S is randomly drawn without repla
ementfrom U , the F and T labels are binomially distributed in T. The probability of �ndingno 
lauses whi
h are labeled with F when randomly drawn |S| · (l− r +1) 
lauses from

T results in „
1 −

1

(l − r + 1) 2r

«|S|(l−r+1)and hen
e, the total number of 
lauses with label F results in
2r (l − r + 1) −

„
1 −

1

(l − r + 1) 2r

«|S|(l−r+1)

(l − r + 1) 2r.7 Experiment with bφrcb Instan
esThe 
omputational 
omplexity of �nding dete
tors is experimentally investigated withthe DLL algorithm. More spe
i�
ally, the parameters l = 75, r = 3 are 
hosen and
|S| is varied from 1 to 25, i.e. for ea
h 
ardinality value from 1 to 25, S 
ontainsdistin
t bit strings whi
h are randomly drawn from U . As a result, one obtains Booleanformulas bφrcb in 75-3-CNF with 75 variables and (75 − 3 + 1) · |S| 
lauses, E[|bφrcb|]distin
t 
lauses, respe
tively. To obtain a large number of di�erent bφrcb instan
es,for ea
h value of |S|, 300 instan
es are randomly generated. The DLL algorithm isapplied on ea
h instan
e and the results: satis�able/unsatis�able and the number ofba
ktra
king attempts are noted. The result is depi
ted in �gure 11. The abs
issadenotes the ratio of the average number of distin
t 
lauses to variables. The ordinatedenotes the number of ba
ktra
king attempts (
omputational 
osts). The resultingordinate values are 
olored gray if the DLL algorithm outputs satis�able, otherwise itoutputs unsatis�able and the values are 
olored bla
k. One 
an see in �gure 11 that for(r3 < 4) a large number of satis�able instan
es exist. Or to say it the other way around,
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Fig. 11 Number of ba
ktra
king attempts (
omputational 
osts) of the DLL algorithm tode
ide whether a bφrcb instan
e is satis�able or unsatis�able. The gray points denote satis�ableinstan
es whereas bla
k points denote unsatis�able instan
es. The �hardest� instan
es are lyingin the interval 4 to 5, termed phase transition region.for small values of |S| the resulting Boolean formula bφrcb is under-
onstrained andtherefore a large number of satis�able instan
es exist. The DLL algorithm hen
e �easily�dedu
es a satis�ability result. The number of satis�able and unsatis�able instan
es isnearly equal for (4 < r3 < 5). These instan
es have the largest un
ertainty for theDLL algorithm. As a 
onsequen
e, the DLL algorithm requires the most ba
ktra
kingattempts to determine whether the instan
es are satis�able or are unsatis�able. Aratio (r3 > 5) implies that a large number of over-
onstrained instan
es exist andhen
e, the DLL algorithm �easily� dedu
es the unsatis�able result. Another way tovisualize this �easy-hard-easy� pattern, is to plot the per
entage of satis�able instan
eson the ordinate (see Fig. 12). One 
an see that the probability of the instan
es beingsatis�able equals 0.5 when (4 < r3 < 5) and rapidly 
hanges to 1 for (r3 < 4) and to
0 for (r3 > 5).7.1 Complexity of Algorithms to Generate Dete
torsIn the last 10 years several algorithms are proposed to generate dete
tors. Moreover, itwas an open problem whether generating all dete
tors 
an be performed e�
iently, i.e.in polynomial time and with polynomial spa
e o

upation with regard to parameters
r and |S|, be
ause all proposed algorithms (see Fig 7.1), either have a time or a spa
e
omplexity whi
h is exponential in the mat
hing length r, i.e. O(2r).There seems to be strong eviden
e that �nding all dete
tors require at least Ω(2r)bit string evaluations. This assumption is thereby justi�ed, that Ω(2r) evaluations arerequired for �nding all satisfying sets for the �rst 
lause of ea
h s ∈ S . Additionally,
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Fig. 12 Coheren
e between the per
entage of satis�able instan
es and the ratio of E[|bφrcb|]/l.The �hardest� instan
es live in the region where the number of satis�able and unsatis�ableinstan
es is equal, or in other words, the probability of instan
es being satis�able equals 0.5.Linear time dete
tor generating algorithm [13℄:Time : O ((l − r) · |S|) +O ((l − r) · 2r) +O (l · |D|)Spa
e : O
`
(l − r)2 · 2r

´Greedy dete
tor generating algorithm [13℄:Time : O ((l − r) · |D| · 2r)Spa
e : O
`
(l − r)2 · 2r

´Binary template algorithm [42℄:Time : O ((l − r) · 2r · |D|) +O (2r · |S|)Spa
e : O ((l − r) · 2r) +O (|D|)NSMutation algorithm [2℄:Time : O
`
2l · |S|

´
+O (|D| · 2r) +O (|D|)Spa
e : O (l · (|S|+ |D|)) +O(|D|)Fig. 13 Complexity overview of proposed algorithms for generating dete
tors.



24the remaining (l − r) 
lauses of ea
h s ∈ S must be veri�ed, whi
h in total 
ould bedone in at most O(|S| · 2k) evaluations. Moreover as outlined in se
tion 6, the k-CNFsatis�ability problem is a de
ision problem, where the input is a Boolean formula f andthe output is �Yes�, if f is satis�able, and �No�, otherwise. The 
urrently fastest knowndeterministi
 algorithm that de
ides the 3-CNF problem, runs in time O(1.473n) [5℄,where n is the number of variables. The probabilisti
 algorithm variant runs in time
O(1.3302n) [23℄.We would like to emphasize here, that the deterministi
 and probabilisti
 k-CNFalgorithms de
ide if a Boolean formula is satis�able. However the algorithms do notdetermine all satis�able assignment sets � in our 
ase, all dete
tors that 
an be gen-erated.8 Con
lusionNegative sele
tion and the asso
iated r-
ontiguous mat
hing rule is a popular immune-inspired method for anomaly dete
tion problems. However, until now there has beenlimited available theoreti
al work from the perspe
tive of a pure pattern 
lassi�
a-tion problem and the 
omputational 
omplexity of generating dete
tors. In this arti
lewe studied the generalization 
apability of negative sele
tion and the asso
iated r-
ontiguous mat
hing rule. Moreover, the partition of the universe U in distin
t subsets
S ,H and N was explained. Based on the probability of the r-
ontiguous mat
hingrule, the average number of dete
tors and holes was determined and the resulted im-pli
ations were dis
ussed. Furthermore, we have shown that the problem of generating
r-
ontiguous dete
tors, when given S and mat
hing length r 
an be transformed intoan instan
e of the k-CNF satis�ability problem. The assignment set of the Booleanformula in k-CNF is the dete
tor set D. This result was exploited to provide insightsinto the 
omputational 
omplexity of generating dete
tors and insights when dete
tors
an be generated at all.Based on these observed fa
ts we 
an state that the negative sele
tion algorithmand the asso
iated r-
ontiguous mat
hing rule is not appropriate for anomaly dete
tionproblems.A
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(m) Coheren
e between |D|, |H| and |N | of the above depi
ted �g-ures 14(a)-14(l).Fig. 14 Coheren
e between dete
tor 
overage and indu
ed holes for stepwise in
reasing mat
h-ing length r. The gray shaded area is 
overed by the generated dete
tors, the white area rep-resents holes. The bla
k points represent normal examples (|S| = 250) whi
h are generated bya mixture of Gaussian distributions (see Fig. 6(a)).



28
(a) r = 5 (b) r = 6 (
) r = 7

(d) r = 8 (e) r = 9 (f) r = 10

(g) r = 11 (h) r = 12 (i) r = 13

(j) r = 14 (k) r = 15 (l) r = 16

 0

 10000

 20000

 30000

 40000

 50000

 60000

 6  8  10  12  14  16

r

|D|
|H|
|N|

(m) Coheren
e between |D|, |H| and |N | of the above depi
ted �g-ures 15(a)-15(l).Fig. 15 Visualized experimental results as in Fig. 14, however with |S| = 5000 generatednormal examples.
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(m) Coheren
e between |D|, |H| and |N | of the above depi
ted �g-ures 16(a)-16(l).Fig. 16 Visualized experimental results as in Fig. 14, however the |S| = 250 generated normalexamples are sampled of probability distribution depi
ted in Fig. 6(b).
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(m) Coheren
e between |D|, |H| and |N | of the above depi
ted �g-ures 17(a)-17(l).Fig. 17 Visualized experimental results as in Fig. 16, however with |S| = 5000 generatednormal examples.


